Synthesis, Table of Contents Synthesis 2018; 50(03): 617-624DOI: 10.1055/s-0036-1590943 paper © Georg Thieme Verlag Stuttgart · New YorkOxidative Functionalization of Cyclic N-Arylamines with Nitromethane and TMSCN Using the T-HYDRO/t-BuOK System Gunda Ananda Rao School of Chemistry, University of Hyderabad, Central University P.O, Hyderabad-500046, India Email: mpsc@uohyd.ac.in , Mariappan Periasamy* School of Chemistry, University of Hyderabad, Central University P.O, Hyderabad-500046, India Email: mpsc@uohyd.ac.in› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract Tertiary cyclic N-arylamines react with nitromethane in the presence of the tert-butyl hydroperoxide (T-HYDRO)/t-BuOK system to give β-nitroamines in up to 90% yield. When TMSCN is used in place of nitromethane, α-aminonitriles are obtained in up to 96% yield. The method is suitable for several unactivated cyclic arylamine substrates. These transformations are rationalized considering the formation of the corresponding iminium ion intermediates via an initial electron transfer process. Key words Key words N-arylamines - iminium ions - enamines - α-aminonitriles - β-nitroamines Full Text References References 1a Scheuermann CJ. Chem. Asian J. 2010; 5: 436 1b Boess E. Schmitz C. Klussmann M. J. Am. Chem. Soc. 2012; 134: 5317 2a Kumaraswamy G. Murthy AN. Pitchaiah A. J. Org. Chem. 2010; 75: 3916 2b Shen Y. Li M. Wang S. Zhan T. Tan Z. Guo C.-C. Chem. Commun. 2009; 953 2c Yang F. Li J. Xie J. Huang Z.-Z. Org. Lett. 2010; 12: 5214 3a Liu W. Liu J. Ogawa D. Nishihara Y. Guo X. Li Z. Org. Lett. 2011; 13: 6272 3b Li Y. Jia F. Li Z. Chem. Eur. J. 2013; 19: 82 3c Liu P. Zhou C.-Y. Xiang S. Che C.-M. Chem. Commun. 2010; 46: 2739 4a Han W. Ofial AR. Chem. Commun. 2009; 5024 4b Murahashi S.-I. Nakae T. Terai H. Komiya N. J. Am. Chem. Soc. 2008; 130: 11005 4c Reddy KH. V. Satish G. Reddy VP. Kumar BS. P. A. Nageswar YV. D. RSC Adv. 2012; 2: 11084 4d Panwar V. Ray SS. Jain SL. Tetrahedron Lett. 2015; 56: 4184 4e Singhal S. Jain SL. Sain B. Chem. Commun. 2009; 2371 5a Li Z. Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672 5b Taniguchi T. Fujii T. Ishibashi H. Org. Biomol. Chem. 2011; 9: 653 5c Zeng T. Song G. Moores A. Li C.-J. Synlett 2010; 2002 6 Ritleng V. Sirlin C. Pfeffer M. Chem. Rev. 2002; 102: 1731 7a Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464 7b Huo C. Wang C. Wu M. Jia X. Wang X. Yuan Y. Xie H. Org. Biomol. Chem. 2014; 12: 3123 8a Bharathi P. Periasamy M. Org. Lett. 1999; 1: 857 8b Periasamy M. Jayakumar KN. Bharathi P. J. Org. Chem. 2005; 70: 5420 8c Periasamy M. Kishorebabu SN. Jayakumar KN. Tetrahedron Lett. 2003; 44: 8939 9a Ho HE. Ishikawa Y. Asao N. Yamamoto Y. Jin T. Chem. Commun. 2015; 51: 12764 9b Condie AG. Gonzàlez-Gòmez JC. Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464 9c Shu X.-Z. Yang Y.-F. Xia X.-F. Ji K.-G. Liu X.-Y. Liang Y.-M. Org. Biomol. Chem. 2010; 8: 4077 9d Rao KT. V. Haribabu B. Prasad PS. S. Lingaiah N. ChemCatChem 2012; 4: 1173 9e Zhang Y. Peng H. Zhang M. Cheng Y. Zhu C. Chem. Commun. 2011; 47: 2354 9f Sakai N. Mutsuro A. Ikeda R. Konakahara T. Synlett 2013; 24: 1283 9g Alagiri K. Kumara GS. R. Prabhu KR. Chem. Commun. 2011; 47: 11787 9h Ratnikov MO. Xu X. Doyle MP. J. Am. Chem. Soc. 2013; 135: 9475 10a Dhineshkumar J. Lamani M. Alagiri K. Prabhu KR. Org. Lett. 2013; 15: 1092 10b Nobuta T. Tada N. Fujiya A. Kariya A. Miura T. Itoh A. Org. Lett. 2013; 15: 574 10c Hari DP. König B. Org. Lett. 2011; 13: 3852 10d Liu L. Wang Z. Fu X. Yan C.-H. Org. Lett. 2012; 14: 5692 10e Zhang C. Liu C. Shao Y. Bao X. Wan X. Chem. Eur. J. 2013; 19: 17917 10f Shen H. Zhang X. Liu Q. Pan J. Hu W. Xiong Y. Zhu X. Tetrahedron Lett. 2015; 56: 5628 11a Neumann M. Zeitler K. Org. Lett. 2012; 14: 2658 11b Rusch F. Unkel L.-N. Alpers D. Hoffmann F. Brasholz M. Chem. Eur. J. 2015; 21: 8336 11c Prier CK. MacMillan DW. C. Chem. Sci. 2014; 5: 4173 12 Rao GA. Periasamy M. Synlett 2015; 26: 2231 13 De La Mare HE. J. Org. Chem. 1960; 25: 2114 Supplementary Material Supplementary Material Supporting Information