Synlett 2017; 28(01): 122-127
DOI: 10.1055/s-0036-1588614
letter
© Georg Thieme Verlag Stuttgart · New York

Chiral Bis(imidazolidine)iodobenzene (I-Bidine) Organocatalyst for Thiochromane Synthesis Using an Asymmetric Michael/Henry Reaction

Takayoshi Arai*
Molecular Chirality Research Center, and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan   Email: tarai@faculty.chiba-u.jp
,
Takumi Suzuki
Molecular Chirality Research Center, and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan   Email: tarai@faculty.chiba-u.jp
,
Takahiro Inoue
Molecular Chirality Research Center, and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan   Email: tarai@faculty.chiba-u.jp
,
Satoru Kuwano
Molecular Chirality Research Center, and Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan   Email: tarai@faculty.chiba-u.jp
› Author Affiliations
Further Information

Publication History

Received: 27 July 2016

Accepted after revision: 11 September 2016

Publication Date:
05 October 2016 (online)


Abstract

Bis(imidazolidine)iodobenzene (I-Bidine) was designed as an organocatalyst based on previously reported imidazolidine- or oxazolidine-containing chiral metal catalysts. I-Bidine showed catalytic activity for the Michael/Henry reaction of thiosalicyl aldehydes with nitroalkenes to give optically active thiochromanes with moderate enantiomeric excesses.

Supporting Information

 
  • References and Notes

    • 1a New Development of Organocatalyst . Shibasaki M. CMC Shuppan; Tokyo: 2006
    • 1b Asymmetric Organocatalysis 1 . List B, Maruoka K. Science of Synthesis; Thieme; Stuttgart: 2011
    • 1c Asymmetric Organocatalysis 2 . List B, Maruoka K. Science of Synthesis; Thieme; Stuttgart: 2011
    • 2a Arai T, Mishiro A, Yokoyama N, Suzuki K, Sato H. J. Am. Chem. Soc. 2010; 132: 5338
    • 2b Arai T, Mishiro A, Matsumura E, Awata A, Shirasugi M. Chem. Eur. J. 2012; 18: 11219
    • 2c Arai T, Matsumura E. Synlett 2014; 25: 1776
    • 2d Arai T, Matsumura E, Masu H. Org. Lett. 2014; 16: 2768
    • 2e Awata A, Arai T. Angew. Chem. Int. Ed. 2014; 53: 10462
    • 2f Arai T, Tsuchiya K, Matsumura E. Org. Lett. 2015; 17: 2416
    • 2g Arai T, Tokumitsu C, Miyazaki T, Kuwano S, Awata A. Org. Biomol. Chem. 2016; 14: 1831
    • 4a Arai T, Oka I, Morihata T, Awata A, Masu H. Chem. Eur. J. 2013; 19: 1554
    • 4b Arai T, Moribatake T, Masu H. Chem. Eur. J. 2015; 21: 10671
  • 5 Arai T, Ogawa H, Awata A, Sato M, Watabe M, Yamanaka M. Angew. Chem. Int. Ed. 2015; 54: 1595

    • For recent progress on chiral ligands containing the imidazolidine motif, see:
    • 6a Braga AL, Vargas F, Silveira CC, de Andrade LH. Tetrahedron Lett. 2002; 43: 2335
    • 6b Lee E.-K, Kim S.-H, Jung B.-H, Ahn W.-S, Kim G.-J. Tetrahedron Lett. 2003; 44: 1971
    • 6c Jin M.-J, Takale VB, Sarkar MS, Kim Y.-M. Chem. Commun. 2006; 663
    • 6d Arai T, Suzuki K. Synlett 2009; 3167
    • 6e Gonzalez-de-Castro A, Robertson CM, Xiao J. J. Am. Chem. Soc. 2014; 136: 8350
    • 6f For a review of chiral imidazolidines as N-heterocyclic carbene ligands, see: Douthwaite RE. Coord. Chem. Rev. 2007; 251: 702

      For recent progress on chiral oxazolidine ligands, see:
    • 7a Dai W.-M, Zhu HJ, Hao X.-J. Tetrahedron: Asymmetry 1996; 7: 1245
    • 7b Clayden J, Lai LW, Helliwell M. Tetrahedron: Asymmetry 2001; 12: 695
    • 7c Braga AL, Appelt HR, Silveira CC, Wessjohann LA, Schneider PH. Tetrahedron 2002; 58: 10413
    • 7d Schneider PH, Schrekker HS, Silveira CC, Wessjohann LA, Braga AL. Eur. J. Org. Chem. 2004; 2715
    • 7e Zhu HJ, Jiang JX, Saebo S, Pittman CU. J. J. Org. Chem. 2005; 70: 261
    • 7f Kang Y.-F, Wang R, Liu L, Da C.-S, Yan W.-J, Xu Z.-Q. Tetrahedron Lett. 2005; 46: 863
    • 7g Kang Y.-F, Liu L, Wang R, Zhou Y.-F, Yan W.-J. Adv. Synth. Catal. 2005; 347: 243
    • 7h Braga AL, Sehnem JA, Lüdtke DS, Zeni G, Silveira CC, Marchi MI. Synlett 2005; 1331
    • 7i Wolf C, Liu S. J. Am. Chem. Soc. 2006; 128: 10996
    • 7j Liu S, Wolf C. Org. Lett. 2007; 9: 2965
    • 7k Strong ET. J, Cardile SA, Brazeau AL, Jennings MC, McDonald R, Jones ND. Inorg. Chem. 2008; 47: 10575
    • 7l Błocka E, Jaworska M, Kozakiewicz A, Wełniak M, Wojtczak A. Tetrahedron: Asymmetry 2010; 21: 571
    • 7m Nakano H, Osone K, Takeshita M, Kwon E, Seki C, Matsuyama H, Takano N, Kohari Y. Chem. Commun. 2010; 46: 4827
    • 7n Xu H, Wolf C. Chem. Commun. 2010; 46: 8026
    • 7o Xu H, Wolf C. Angew. Chem. Int. Ed. 2011; 50: 12249
    • 7p Csillag K, Németh L, Martinek TA, Szakonyi Z, Fülöp F. Tetrahedron: Asymmetry 2012; 23: 144
    • 7q Wu N, Bo R, Zhang R, Jiang X, Wan Y, Xu Z, Wu H. Lett. Org. Chem. 2012; 9: 644
    • 7r Tsuno T, Kato D, Brunner H, Ike H. Inorg. Chim. Acta 2012; 392: 331
    • 7s Ardizzoia GA, Brenna S, Therrien B. Dalton Trans. 2012; 41: 783
    • 7t Fairhurst NW. G, Munday RH, Carbery DR. Synlett 2013; 24: 496
    • 7u Wiskur SL, Maynor MS, Smith MD, Sheppard CI, Akhani RK, Pellechia PJ, Vaughn SA, Shieh C. J. Coord. Chem. 2013; 66: 1166
    • 7v Liang Q, He J, Ni B. Tetrahedron: Asymmetry 2014; 25: 1146
    • 7w Bhosale DS, Drabina P, Palarčík J, Hanusek J, Sedlák M. Tetrahedron: Asymmetry 2014; 25: 334

    • For reviews, see:
    • 7x Wolf C, Xu H. Chem. Commun. 2011; 47: 3339
    • 7y Nakano H, Okuyama Y, Kwon E. Heterocycles 2014; 89: 1
    • 8a Bruckmann A, Pena MA, Bolm C. Synlett 2008; 900
    • 8b Coulembier O, Meyer F, Dubois P. Polym. Chem. 2010; 1: 434
    • 8c Kniep F, Jungbauer SH, Zhang Q, Walter SM, Schindler S, Schnapperelle I, Herdtweck E, Huber SM. Angew. Chem. Int. Ed. 2013; 52: 7028
    • 8d He W, Ge Y.-C, Tan C.-H. Org. Lett. 2014; 16: 3244
    • 8e Jungbauer SH, Walter SM, Schindler S, Rout L, Kniep F, Huber SM. Chem. Commun. 2014; 50: 6281
    • 8f Zong L, Ban X, Kee CW, Tan C.-H. Angew. Chem. Int. Ed. 2014; 53: 11849
    • 8g Jungbauer SH, Huber SM. J. Am. Chem. Soc. 2015; 137: 12110
    • 8h Saito M, Tsuji N, Kobayashi Y, Takemoto Y. Org. Lett. 2015; 17: 3000
    • 8i Takeda Y, Hisakuni D, Lin C.-H, Minakata S. Org. Lett. 2015; 17: 318
    • 8j de Paul N Nziko V, Scheiner S. J. Org. Chem. 2016; 81: 2589
    • 8k Breugst M, Detmar E, von der Heiden D. ACS Catal. 2016; 6: 3203
    • 8l Kee CW, Wong MW. J. Org. Chem. 2016; 81: 7459

      For reviews on halogen bonding, see:
    • 9a Erdélyi M. Chem. Soc. Rev. 2012; 41: 3547
    • 9b Beale TM, Chudzinski MG, Sarwar MG, Taylor MS. Chem. Soc. Rev. 2013; 42: 1667
    • 9c Bulfield D, Huber SM. Chem. Eur. J. 2016; 22: 14434
  • 10 Braddock DC, Cailleau T, Cansell G, Hermitage SA, Pouwer RH, Redmond JM, White AJ. P. Tetrahedron: Asymmetry 2010; 21: 2911
  • 11 Synthesis of I-Bidines (1); General Procedure: To a stirred solution of 2-iodoisophthalaldehyde (1 equiv) in CH2Cl2 (0.067 M) were added monoarylmethyl-(1R,2R)-1,2-diphenylethane-1,2-diamine (2.2 equiv), and AcOH (2.2 equiv) at rt. After being stirred for appropriate time, the reaction mixture was quenched by H2O, and extracted with CH2Cl2. The combined organic layers were washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to afford the product. I-Bidine (1a): 1H NMR (400 MHz, CDCl3): δ = 7.98 (d, J = 7.2 Hz, 2 H), 7.21–7.43 (m, 21 H), 7.00–7.08 (m, 6 H), 6.94 (d, J = 7.4 Hz, 4 H), 5.31 (s, 2 H), 4.29 (d, J = 7.9 Hz, 2 H), 3.77 (d, J = 8.1 Hz, 2 H), 3.70 (d, J = 13.7 Hz, 2 H), 3.62 (d, J = 13.9 Hz, 2 H), 2.27 (br s, 2 H). 13C NMR (125 MHz, CDCl3): δ = 143.9, 141.7, 139.8, 135.6, 129.9, 129.3, 128.5, 128.4, 128.2, 128.1, 127.6, 127.5, 127.10, 127.06, 126.7, 106.4, 84.0, 75.4, 68.5, 53.5. HRMS: m/z [M + H]+ calcd for C50H46IN4: 829.2762; found: 829.2771. IR (neat) 3083, 3060, 3027, 2972, 2926, 2844, 1602, 1494, 1454, 1048, 880, 759, 699 cm–1.
  • 12 Crystal Data for I-Bidine (1a): C50H45IN4: MW = 828.80, monoclinic, P21, a = 10.1466(13) Å, b = 12.5687(15) Å, c = 16.297(2) Å; α = 90°, β = 101.573(2)°, γ = 90°, V = 2036.1(4) Å3, Z = 2, R = 0.0390 and wR = 0.0647. CCDC 1425335 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 13a Zu L, Xie H, Li H, Wang J, Jiang W, Wang W. Adv. Synth. Catal. 2007; 349: 1882
    • 13b Zu L, Wang J, Li H, Xie H, Jiang W, Wang W. J. Am. Chem. Soc. 2007; 129: 1036
    • 13c Dodda R, Mandel T, Zhao C.-G. Tetrahedron Lett. 2008; 49: 1899
    • 13d Wang J, Xie H, Li H, Zu L, Wang W. Angew. Chem. Int. Ed. 2008; 47: 4177
    • 13e Dodda R, Goldman JJ, Mandel T, Zhao C.-G, Broker GA, Tiekink ER. T. Adv. Synth. Catal. 2008; 350: 537
    • 13f Fukamizu K, Miyake Y, Nishibayashi Y. J. Am. Chem. Soc. 2008; 130: 10498
    • 13g Zhao G.-L, Vesely J, Rios R, Ibrahem I, Sundén H, Córdova A. Adv. Synth. Catal. 2008; 350: 237
    • 13h Gao Y, Ren Q, Wu H, Li M, Wang J. Chem. Commun. 2010; 46: 9232
    • 13i Liu T.-L, He Z.-L, Wang C.-J. Chem. Commun. 2011; 47: 9600
    • 13j Dong X.-Q, Fang X, Tao H.-Y, Zhou X, Wang C.-J. Chem. Commun. 2012; 48: 7238
    • 13k Du Z, Zhou C, Gao Y, Ren Q, Zhang K, Cheng H, Wang W, Wang J. Org. Biomol. Chem. 2012; 10: 36
    • 13l Yang Y, Du D. Chin. J. Chem. 2014; 32: 853
    • 13m Arai T, Yamamoto Y. Org. Lett. 2014; 16: 1700
    • 13n Zhao B.-L, Du D.-M. Asian J. Org. Chem. 2015; 4: 778
  • 14 General Procedure for Asymmetric Michael/Henry Reaction: To a two-necked round-bottomed flask were added I-Bidine (0.015 mmol), nitrostyrene (0.15 mmol), and anhyd toluene (1 mL) under argon, and the mixture was cooled to –40 °C. Slow addition of 2-mercaptobenzaldehyde (0.225 mmol, ca. 75% purity) in anhyd toluene (5 mL) using syringe pump was conducted for 15 h. Then the completion of the reaction was checked by TLC and the solvent was removed under reduced pressure. Yield and diastereomeric ratio of the product were determined by crude 1H NMR. The crude mixture was purified by silica gel column chromatography to afford the 2-aryl-3-nitrothiochroman-4-ol. The enantiomeric excesses of the product were determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H, AS-H, and Chiralcel OD-H column. (2R,3S,4R)-3-Nitro-2-phenylthiochroman-4-ol (anti-4a): 1H NMR (400 MHz, acetone-d 6): δ = 7.72–7.74 (m, 1 H), 7.53 (dd, J = 1.6, 8.5 Hz, 2 H), 7.36–7.43 (m, 3 H), 7.22–7.29 (m, 2 H), 7.11–7.14 (m, 1 H), 5.69 (d, J = 8.3 Hz, 1 H), 5.36–5.45 (m, 2 H), 5.15 (d, J = 10.8 Hz, 1 H). 13C NMR (125 MHz, acetone-d 6): δ = 136.4, 135.9, 132.5, 130.0, 129.8, 129.3, 129.1, 128.6, 126.0, 125.4, 94.1, 72.3, 47.4. HRMS: m/z [M + NH4]+ calcd for C15H17N2O3S: 305.0954; found: 305.0954. IR (neat): 3380, 3062, 3024, 1587, 1555, 1037, 753, 741, 702 cm–1. [α]D 26.5 +7.0 (c = 0.05, MeOH, 53% ee); enantiomeric excess was determined by HPLC with a Chiralpak AD-H column [hexane–2-propanol (85:15), flow rate: 0.7 mL/min, λ = 254 nm]; t R (minor enantiomer) = 16.4 min, t R (major enantiomer) = 17.7 min; 53% ee. (2R,3S,4S)-3-Nitro-2-phenylthiochroman-4-ol (syn-4a): 1H NMR (400 MHz, acetone-d 6): δ = 7.59–7.62 (m, 2 H), 7.49 (dd, J = 1.6, 7.6 Hz, 1 H), 7.33–7.43 (m, 3 H), 7.30 (dt, J = 1.5, 7.6 Hz, 1 H), 7.20 (dt, J = 1.4, 7.5 Hz, 1 H), 7.15 (dd, J = 1.4, 7.9 Hz, 1 H), 5.71 (dd, J = 2.9, 11.7 Hz, 1 H), 5.48 (d, J = 5.8 Hz, 1 H), 5.41 (dd, J = 2.9, 5.6 Hz, 1 H), 5.28 (d, J = 11.7 Hz, 1 H). 13C NMR (100 MHz, acetone-d 6): δ = 137.7, 134.5, 133.5, 132.0, 129.9, 129.6, 129.22, 129.19, 125.7, 125.4, 90.1, 70.6, 41.4. HRMS: m/z [M + NH4]+ calcd for C15H17N2O3S: 305.0954; found: 305.0957. IR (neat): 3389, 3061, 2925, 2853, 1702, 1644, 1586, 1555, 1520, 1439, 1316, 1036, 762 cm–1. [α]D 25.9 +78.9 (c = 0.05, MeOH, 69% ee); enantiomeric excess was determined by HPLC with a Chiralpak AD-H column [hexane:2-propanol (85:15), flow rate: 0.7 mL/min, λ = 254 nm]; t R (minor enantiomer) = 21.4 min; t R (major enantiomer) = 14.2 min; 69% ee.