Synthesis, Table of Contents Synthesis 2017; 49(23): 5224-5230DOI: 10.1055/s-0036-1588546 paper © Georg Thieme Verlag Stuttgart · New YorkTf2NH-Catalyzed 1,6-Conjugate Addition of Vinyl Azides with p-Quinone Methides: A Mild and Efficient Method for the Synthesis of β-Bis-Arylamides Jayant Rathod a Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India Email: pk.tripathi@ncl.res.in b Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India , Brijesh M. Sharma a Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India Email: pk.tripathi@ncl.res.in b Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India , Pramod S. Mali c Central NMR Facility, National Chemical Laboratory, Pune-411008, India , Pradeep Kumar* a Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008, India Email: pk.tripathi@ncl.res.in b Academy of Scientific and Innovative Research (AcSIR), New Delhi-110025, India› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Abstract Tf2NH-catalyzed tandem 1,6-conjugate addition/Schmidt type rearrangement using vinyl azides and p-quinone methides to access a variety of β-bis-arylated amides is reported. The method is quick, efficient, mild, and high yielding with broad substrate scope. Key words Key wordsvinyl azide - p-quinone methide - Brønsted acid - 1,6-conjugate addition - rearrangement - β-bis-arylamides Full Text References References 1a Parella R. Gopalakrishnan B. Arulananda Babu S. J. Org. Chem. 2013; 78: 11911 1b Mu D. Gao F. Chen G. He G. ACS Catal. 2017; 7: 1880 1c Yang X. Shan G. Wang L. Rao Y. Tetrahedron Lett. 2016; 57: 819 1d Kerdphon S. Quan X. Parihar VS. Andersson PG. J. Org. Chem. 2015; 80: 11529 1e Wasa M. Yu J.-Q. Tetrahedron 2010; 66: 4811 2a Turner AB. Q. Rev. Chem. Soc. 1964; 18: 347 2b Peter MG. Angew. Chem. Int. Ed. 1989; 28: 555 2c Angle SR. Turnbull KD. J. Am. Chem. Soc. 1989; 111: 1136 2d Angle SR. Louie MS. Mattson HL. Yang W. Tetrahedron Lett. 1989; 30: 1193 3a Takao K.-i. Sasaki T. Kozaki T. Yanagisawa Y. Tadano K.-i. Kawashima A. Shinonaga H. Org. Lett. 2001; 3: 4291 3b Groszek G. Błażej S. Brud A. Świerczyński D. Lemek T. Tetrahedron 2006; 62: 2622 4a Hart DJ. Cain PA. Evans DA. J. Am. Chem. Soc. 1978; 100: 1548 4b Hamels D. Dansette PM. Hillard EA. Top S. Vessières A. Herson P. Jaouen G. Mansuy D. Angew. Chem. Int. Ed. 2009; 48: 9124 4c Sridar C. D’Agostino J. Hollenberg PF. Drug Metab. Dispos. 2012; 40: 2280 5a Dehn R. Katsuyama Y. Weber A. Gerth K. Jansen R. Steinmetz H. Höfle G. Müller R. Kirschning A. Angew. Chem. Int. Ed. 2011; 50: 3882 5b Messiano GB. da Silva T. Nascimento IR. Lopes LM. Phytochemistry 2009; 70: 590 6a Ke M. Song Q. Adv. Synth. Catal. 2017; 359: 384 6b Molleti N. Kang JY. Org. Lett. 2017; 19: 958 6c Ge L. Lu X. Cheng C. Chen J. Cao W. Wu X. Zhao G. J. Org. Chem. 2016; 81: 9315 6d Huang B. Shen Y. Mao Z. Liu Y. Cui S. Org. Lett. 2016; 18: 4888 7a Jadhav AS. Anand RV. Org. Biomol. Chem. 2017; 15: 56 7b Mahesh S. Kant G. Anand RV. RSC Adv. 2016; 6: 80718 7c Goswami P. Anand RV. ChemistrySelect 2016; 1: 2556 7d Arde P. Anand RV. RSC Adv. 2016; 6: 77111 7e Arde P. Anand RV. Org. Biomol. Chem. 2016; 14: 5550 7f Ramanjaneyulu BT. Mahesh S. Anand RV. Org. Lett. 2015; 17: 3952 7g Reddy V. Anand RV. Org. Lett. 2015; 17: 3390 8a Zhao K. Zhi Y. Wang A. Enders D. ACS Catal. 2016; 6: 657 8b Deng Y.-H. Zhang X.-Z. Yu K.-Y. Yan X. Du J.-Y. Huang H. Fan C.-A. Chem. Commun. 2016; 52: 4183 8c Jarava-Barrera C. Parra A. López A. Cruz-Acosta F. Collado-Sanz D. Cárdenas DJ. Tortosa M. ACS Catal. 2016; 6: 442 8d Zhang X.-Z. Deng Y.-H. Yan X. Yu K.-Y. Wang F.-X. Ma X.-Y. Fan C.-A. J. Org. Chem. 2016; 81: 5655 8e Shen Y. Qi J. Mao Z. Cui S. Org. Lett. 2016; 18: 2722 9a Dong N. Zhang ZP. Xue XS. Li X. Cheng JP. Angew. Chem. Int. Ed. 2016; 55: 1460 9b Caruana L. Kniep F. Johansen TK. Poulsen PH. Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929 9c Chu WD. Zhang LF. Bao X. Zhao XH. Zeng C. Du JY. Zhang GB. Wang FX. Ma XY. Fan CA. Angew. Chem. Int. Ed. 2013; 52: 9229 10a Gao S. Xu X. Yuan Z. Zhou H. Yao H. Lin A. Eur. J. Org. Chem. 2016; 3006 10b Yuan Z. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 3370 10c Li X. Xu X. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 428 10d Yang C. Gao S. Yao H. Lin A. J. Org. Chem. 2016; 81: 11956 10e Yuan Z. Fang X. Li X. Wu J. Yao H. Lin A. J. Org. Chem. 2015; 80: 11123 10f Gai K. Fang X. Li X. Xu J. Wu X. Lin A. Yao H. Chem. Commun. 2015; 51: 15831 11a Zhang X.-Z. Deng Y.-H. Gan K.-J. Yan X. Yu K.-Y. Wang F.-X. Fan C.-A. Org. Lett. 2017; 19: 1752 11b Yuan Z. Gai K. Wu Y. Wu J. Lin A. Yao H. Chem. Commun. 2017; 53: 3485 11c Roiser L. Waser M. Org. Lett. 2017; 19: 2338 12a Jung N. Bräse S. Angew. Chem. Int. Ed. 2012; 51: 12169 12b Chiba S. Chimia 2012; 66: 377 12c Chiba S. Synlett 2012; 23: 21 12d Organic Azides: Syntheses and Applications . Bräse S. Banert K. Wiley; New York: 2010 12e Stokes BJ. Driver TG. Eur. J. Org. Chem. 2011; 4071 12f Driver TG. Org. Biomol. Chem. 2010; 8: 3831 12g Liu Z. Liu J. Zhang L. Liao P. Song J. Bi X. Angew. Chem. Int. Ed. 2014; 53: 5305 12h Liu Z. Liao P. Bi X. Org. Lett. 2014; 16: 3668 12i Hu B. DiMagno SG. Org. Biomol. Chem. 2015; 13: 3844 13a Hassner A. Ferdinandi ES. Isbister RJ. J. Am. Chem. Soc. 1970; 92: 1672 13b Moore HW. Shelden HR. Weyler WJr. Tetrahedron Lett. 1969; 1243 14a Zhang F. Wang Y. Lonca GH. Zhu X. Chiba S. Angew. Chem. Int. Ed. 2014; 53: 4390 14b Zhang F. Zhu X. Chiba S. Org. Lett. 2015; 16: 6136 14c Zhu X. Wang Y.-F. Zhang F.-L. Chiba S. Chem. Asian J. 2014; 9: 2458 14d The Chemistry of Enamines . Rappoport Z. Wiley; New York: 1994 14e Stork G. Brizzolara A. Landesman H. Szmuszkovicz J. Terrell R. J. Am. Chem. Soc. 1963; 85: 207 14f Zhang Z. Kumar RK. Li G. Wu D. Bi X. Org. Lett. 2015; 17: 6190 15 Zhang F.-L. Zhu X. Chiba S. Org. Lett. 2015; 17: 3138 16 Lin C. Shen Y. Huang B. Liu Y. Cui S. J. Org. Chem. 2017; 82: 3950 Supplementary Material Supplementary Material Supporting Information