Synlett 2017; 28(15): 2000-2003
DOI: 10.1055/s-0036-1588422
letter
© Georg Thieme Verlag Stuttgart · New York

In situ Generation and Utilization of CO: An Efficient Route towards N-Substituted Saccharin via Carbonylative Cyclization of 2-Iodosulfonamides

Sujit P. Chavan
a   Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai-400019, India   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
,
Adithyaraj K.
b   Integrated Science Education & Research Centre (ISERC), Visva Bharati University, Santiniketan 731235, West Bengal, India
,
Bhalchandra M. Bhanage*
a   Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai-400019, India   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 25 February 2017

Accepted after revision: 20 April 2017

Publication Date:
18 May 2017 (online)


Abstract

The present protocol demonstrates the synthesis of N-substituted saccharines via carbonylative cyclization of 2-iodosulfonamides using a Pd(OAc)2/Xantphos catalyst system and phenyl formate as a CO source. A variety of saccharin derivatives is synthesized under milder reaction conditions.

Supporting Information

 
  • References and Notes

    • 1a Blanchet J. Macklin T. Ang P. Metallinos C. Snieckus V. J. Org. Chem. 2007; 72: 3199
    • 1b Soler L. Cerrada V. Matia MP. Novella JL. Alvarez-Builla J. ARKIVOC 2007; (iv): 312
    • 1c Fiorino F. Caliendo G. Perissutti E. Severino B. Frecentese F. Preziosi B. Izzo AA. Capasso R. Santagada V. Arch. Pharm. 2005; 338: 548
    • 1d Lai Z. Gan X. Wie L. Alliston KR. Yu H. Li YH. Groutas WC. Arch. Biochem. Biophys. 2004; 429: 191
    • 1e Caliendo G. Fiorino F. Perissutti E. Severino B. Scolaro D. Gessi S. Cattabriga E. Borea PA. Santagada V. Eur. J. Pharm. Sci. 2002; 16: 15
    • 1f Soubh L. Besch A. Otto HH. Pharmazie 2002; 57: 384
    • 1g De Monte C. Carradori S. Secci D. Dascenzio M. Vullo D. Ceruso M. Supuran CT. Eur. J. Med. Chem. 2014; 84: 240
    • 1h Csakai A. Smith C. Davis E. Martinko A. Coulup S. Yin H. J. Med. Chem. 2014; 57: 5348
  • 2 Martyn DC. Moore MJ. B. Abell AD. Curr. Pharm. Design 1999; 5: 405
  • 3 Gonzalez-Martin G. Lyndon C. Sunkel C. Eur. J. Pharm Biopharm. 1998; 46: 293
  • 4 Nagasawa HT. Kawle SP. Elberling JA. DeMaster EG. Fukuto JM. J. Med. Chem. 1995; 38: 1865
  • 5 Combrink KD. Gulgeze HB. Meanwell NA. Pearce BC. Zulan P. Bissacci GS. Roberts DG. M. Stanley P. Seiler SM. J. Med. Chem. 1998; 41: 4854
    • 6a Groutas WC. Huang H. Venkataraman R. Houser-Archield N. Epp JB. Bioorg. Med. Chem. 1993; 1: 273
    • 6b Hlasta DJ. Bell MR. Boaz NW. Court JJ. Desai RC. Franke CA. Mura AJ. Subramanyam C. Dunlap RP. Bioorg. Med. Chem. Lett. 1994; 4: 1801
    • 6c Hlasta DJ. Bell MR. Court JJ. Cundy KC. Desai RC. Ferguson EW. Gordon RJ. Kumar V. Maycock AL. Subramanyam C. Bioorg. Med. Chem. Lett. 1995; 5: 331
  • 7 Romero AG. Darlington WH. Piercey MF. Lahti RA. Bioorg. Med. Chem. Lett. 1992; 2: 1703
  • 8 Jakopin Z. Dolenc MS. Curr. Med. Chem. 2010; 17: 651
    • 9a Xu L. Shu H. Liu Y. Zhang S. Trudell ML. Tetrahedron 2006; 62: 7902
    • 9b Gadanyi S. Kalai T. Jeko J. Berente Z. Hideg K. Synthesis 2000; 2039
    • 9c Kamogawa H. Yamamoto S. Nanasawa M. Bull. Chem. Soc. Jpn. 1982; 55: 3824
    • 9d Katohgi M. Togo H. Yamaguchi K. Yokoyama M. Tetrahedron 1999; 55: 14885
  • 10 Jakopin Z. Dolenc SM. Synth. Commun. 2008; 38: 3422
    • 11a Desai RC. Hlasta DJ. Monsour G. Saindane MT. J. Org. Chem. 1994; 59: 7161
    • 11b Hlasta DJ. Court JJ. Desai RC. Tetrahedron Lett. 1991; 32: 7179
    • 11c Lombardino JG. J. Org. Chem. 1971; 36: 1843
    • 11d Aliyenne OA. Khiari JE. Kraiem J. Kacem Y. Ben Hassine B. Tetrahedron Lett. 2006; 47: 6405
    • 11e Proudfoot JR. Patel UR. Dyatkin AB. J. Org. Chem. 1997; 62: 1851
    • 12a Lam PY. S. Vincent G. Clark CG. Deudon S. Jadhav PK. Tetrahedron Lett. 2001; 42: 3415
    • 12b Chan DM. T. Monaco KL. Wang RP. Winters MP. Tetrahedron Lett. 1998; 39: 2933
    • 12c Chan DM. T. Tetrahedron Lett. 1996; 37: 9013
    • 13a Kim HJ. Kim J. Cho SH. Chang S. J. Am. Chem. Soc. 2011; 133: 16382
    • 13b Kantak AA. Potavathri S. Barham RA. Romano KM. DeBoef B. J. Am. Chem. Soc. 2011; 133: 19960
    • 13c Togo H. Hoshina Y. Muraki T. Nakayama H. Yokoyama M. J. Org. Chem. 1998; 63: 5193
    • 14a Wu X-F. Neumann H. Beller M. Chem. Rev. 2013; 113: 1
    • 14b Gabriele B. Mancuso R. Salerno G. Eur. J. Org. Chem. 2012; 6825
    • 14c Majumdar KC. Samanta S. Sinha B. Synthesis 2012; 44: 817
    • 14d Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
    • 14e Gabriele B. Salerno G. Costa M. Synlett 2004; 2468
    • 14f Ali BE. Alper H. Synlett 2000; 161
    • 14g Tamaru Y. Yoshida Z. J. Organomet. Chem. 1987; 334: 213
    • 14h Wolfe JP. Eur. J. Org. Chem. 2007; 571
    • 14i Khumtaveeporn K. Alper H. Acc. Chem. Res. 1995; 28: 414
    • 14j Mihovilovic MD. Stanetty P. Angew. Chem. Int. Ed. 2007; 46: 3612
    • 14k Mei T-S. Kou L. Ma S. Engle KM. Yu J-Q. Synthesis 2012; 44: 1778
    • 14l Wu X-F. Neumann H. Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 14m Gadge ST. Bhanage BM. RSC Adv. 2014; 4: 10367
    • 14n Chavan SP. Varadwaj GB. B. Parida K. Bhanage BM. ChemCatChem 2016; 8: 2649
    • 14o Chavan SP. Bhanage BM. Asian J. Org. Chem. 2016; 5: 1120
  • 15 Dai H.-X. Stepan AF. Plummer MS. Zhang Y.-H. Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 7222
    • 17a Li H. Neumann H. Beller M. Wu XF. Angew. Chem. Int. Ed. 2014; 53: 3183
    • 17b Hoshimoto Y. Ohata T. Sasaoka Y. Ohashi M. Ogoshi S. J. Am. Chem. Soc. 2014; 136: 15877
    • 17c Konishi H. Nagase H. Manabe K. Chem. Commun. 2015; 51: 1854
    • 17d Wang H. Dong B. Wang Y. Li J. Shi Y. Org. Lett. 2014; 16: 186
    • 17e Zhang Y. Chen J.-L. Chen Z-B. Zhu Y.-M. Ji S.-J. J. Org. Chem. 2015; 80: 10643
  • 18 Chavan SP. Bhanage BM. Eur. J. Org. Chem. 2015; 2405
  • 19 Katafuchi Y. Fujihara T. Iwai T. Terao J. Tsuji Y. Adv. Synth. Catal. 2011; 353: 475
  • 20 Gildner PG. Colacot TJ. Organometallics 2015; 34: 5497
  • 21 General Experimental Procedure for the Synthesis of N-Substituted Saccharins An oven-dried Schlenk tube was charged with Pd(OAc)2 (6.7 mg, 0.03 mmol), Xantphos (34.7 mg, 0.06 mmol), 2-iodosulfonamide (1.0 mmol), phenyl formate (1.5 mmol), and Et3N (3 mmol) under nitrogen, and the reaction mixture was stirred at 80 °C for 18 h. The reaction mixture was then diluted with EtOAc (10 mL) and aq NaHCO3 (10 mL), and the aqueous phase was further extracted with EtOAc (3 × 20 mL). The combined organic layers washed with brine, dried over Na2SO4, filtered, and the solvent was removed under reduced pressure. The crude residue was purified by column chromatography on silica gel (120–200 mesh) using EtOAc–PE as eluents to give the corresponding N-substituted saccharin 3ao. Compound 3a: isolated as white solid; 238 mg (92%). 1H NMR (500 MHz, CDCl3): δ = 8.16 (d, J = 7.6 Hz, 1 H), 8.02–7.98 (m, 1 H), 7.95–7.86 (m, 2 H), 7.59–7.52 (m, 5 H). 13C NMR (126 MHz, CDCl3): δ = 158.3, 137.6, 135.0, 134.4, 130.1, 129.9, 128.7, 128.6. 127.1, 125.6, 121.2. Compound 3h: isolated as white solid; 249 mg (90%). 1H NMR (500 MHz, CDCl3): δ = 8.15 (d, J = 7.6 Hz, 1 H), 7.99 (d, J = 7.4 Hz, 1 H), 7.95–7.86 (m, 2 H), 7.54–7.49 (m, 1 H), 7.36 (d, J = 7.6 Hz, 1 H), 7.30 (dt, J = 9.1, 2.2 Hz, 1 H), 7.24–7.20 (m, 1 H). 13C NMR (126 MHz, CDCl3): δ = 163.9, 161.9, 158.0, 137.4, 135.2, 134.6, 131.0, 130.9, 130.1, 130.0, 126.8, 125.7, 124.0, 124.0, 121.2, 117.2, 117.1, 116.0, 115.8. Compound 3m: isolated as white solid; 245 mg (90%). 1H NMR (500 MHz, CDCl3): δ = 8.04 (d, J = 7.6 Hz, 1 H), 7.91 (d, J = 7.4 Hz, 1 H), 7.86–7.78 (m, 2 H), 7.50 (d, J = 7.3 Hz, 2 H), 7.37–7.29 (m, 3 H), 4.90 (s, 2 H). 13C NMR (126 MHz, CDCl3): δ = 158.8, 137.7, 134.7, 134.4, 134.3, 128.7, 128.6, 128.2, 127.2, 125.2, 121.0, 42.6.