Semin Neurol 2016; 36(01): 010-019
DOI: 10.1055/s-0035-1571215
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Botulinum Toxin as a Therapeutic Agent: Molecular Structure and Mechanism of Action in Motor and Sensory Systems

Raj Kumar
1   Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, Massachusetts
,
Harkiran Preet Dhaliwal
2   Biomedical Engineering and Biotechnology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts
,
Roshan Vijay Kukreja
1   Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, Massachusetts
,
Bal Ram Singh
1   Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, Massachusetts
3   Prime Bio. Inc., Dartmouth, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
11 February 2016 (online)

Abstract

Botulinum neurotoxin (BoNT) produced by Clostridium botulinum is the most potent molecule known to mankind. Higher potency of BoNT is attributed to several factors, including structural and functional uniqueness, target specificity, and longevity. Although BoNT is an extremely toxic molecule, it is now increasingly used for the treatment of disorders related to muscle hyperactivity and glandular hyperactivity. Weakening of muscles due to peripheral action of BoNT produces a therapeutic effect. Depending on the target tissue, BoNT can block the cholinergic neuromuscular or cholinergic autonomic innervation of exocrine glands and smooth muscles. In recent observations of the analgesic properties of BoNT, the toxin modifies the sensory feedback loop to the central nervous system. Differential effects of BoNT in excitatory and inhibitory neurons provide a unique therapeutic tool. In this review the authors briefly summarize the structure and mechanism of actions of BoNT on motor and sensory neurons to explain its therapeutic effects and future potential.

 
  • References

  • 1 Sobel J. Botulism. Clin Infect Dis 2005; 41 (8) 1167-1173
  • 2 Centers for Disease Control (CDC). Botulism. Atlanta, GA: CDC. Available at: http://www.cdc.gov/nczved/divisions/dfbmd/diseases/botulism/ . Accessed April 25, 2014
  • 3 Nigam PK, Nigam A. Botulinum toxin. Indian J Dermatol 2010; 55 (1) 8-14
  • 4 Wenham T, Cohen A. Botulism. Contin Educ Anaesth Crit Care Pain 2008; 8: 21-25
  • 5 Snipe PT, Sommer H. Studies on botulinus toxin: 3. Acid precipitation of botulinus toxin. J Infect Dis 1928; 43: 152-160
  • 6 Stefanye D, Schantz EJ, Spero L. Amino acid composition of crystalline botulinum toxin, type A. J Bacteriol 1967; 94 (1) 277-278
  • 7 Lamanna C, Spero L, Schantz EJ. Dependence of time to death on molecular size of botulinum toxin. Infect Immun 1970; 1 (4) 423-424
  • 8 Schantz EJ. Some chemical and physical properties of Clostridium botulinum toxins in culture. Jpn J Microbiol 1967; 11 (4) 380-383
  • 9 Scott AB, Rosenbaum A, Collins CC. Pharmacologic weakening of extraocular muscles. Invest Ophthalmol 1973; 12 (12) 924-927
  • 10 Scott AB. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology 1980; 87 (10) 1044-1049
  • 11 Chen S. Clinical uses of botulinum neurotoxins: current indications, limitations and future developments. Toxins (Basel) 2012; 4 (10) 913-939
  • 12 Carruthers J, Stubbs HA. Botulinum toxin for benign essential blepharospasm, hemifacial spasm and age-related lower eyelid entropion. Can J Neurol Sci 1987; 14 (1) 42-45
  • 13 Sattler G. Current and future botulinum neurotoxin type A preparations in aesthetics: a literature review. J Drugs Dermatol 2010; 9 (9) 1065-1071
  • 14 Singh BR. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox Res 2006; 9 (2–3) 73-92
  • 15 Humeau Y, Doussau F, Grant NJ, Poulain B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 2000; 82 (5) 427-446
  • 16 Inoue K, Fujinaga Y, Watanabe T , et al. Molecular composition of Clostridium botulinum type A progenitor toxins. Infect Immun 1996; 64 (5) 1589-1594
  • 17 Singh BR, Chang TW, Kukreja R, Cai S. The botulinum neurotoxin complex and the role of ancillary proteins. In: Foster KA, , ed. Molecular Aspects of Botulinum Neurotoxin. New York: Springer; 2014: 69-102
  • 18 Singh BR, Foley J, Lafontaine C. Physicochemical and immunological characterization of the type E botulinum neurotoxin binding protein purified from Clostridium botulinum. J Protein Chem 1995; 14 (1) 7-18
  • 19 East AK, Collins MD. Conserved structure of genes encoding components of botulinum neurotoxin complex M and the sequence of the gene coding for the nontoxic component in nonproteolytic Clostridium botulinum type F. Curr Microbiol 1994; 29 (2) 69-77
  • 20 Klein AW, Kreyden OP. Storage and dilution of botulinum toxin. In: Boni R, Burg G, Kreyden OP, , eds. Hyperhidrosis and Botulinum Toxin in Dermatology. Basel: Karger Publishers; 2002: 126-130
  • 21 Bryant AM, Davis J, Cai S, Singh BR. Molecular composition and extinction coefficient of native botulinum neurotoxin complex produced by Clostridium botulinum hall A strain. Protein J 2013; 32 (2) 106-117
  • 22 Carli L, Montecucco C, Rossetto O. Assay of diffusion of different botulinum neurotoxin type a formulations injected in the mouse leg. Muscle Nerve 2009; 40 (3) 374-380
  • 23 Stone HF, Zhu Z, Thach TQ, Ruegg CL. Characterization of diffusion and duration of action of a new botulinum toxin type A formulation. Toxicon 2011; 58 (2) 159-167
  • 24 Panicker JN, Muthane UB. Botulinum toxins: pharmacology and its current therapeutic evidence for use. Neurol India 2003; 51 (4) 455-460
  • 25 Kim EJ, Ramirez AL, Reeck JB, Maas CS. The role of botulinum toxin type B (Myobloc) in the treatment of hyperkinetic facial lines. Plast Reconstr Surg 2003; 112 (5, Suppl): 88S-93S , discussion 94S–97S
  • 26 Callaway JE. Botulinum toxin type B (Myobloc): pharmacology and biochemistry. Clin Dermatol 2004; 22 (1) 23-28
  • 27 Cai S, Sarkar HK, Singh BR. Enhancement of the endopeptidase activity of botulinum neurotoxin by its associated proteins and dithiothreitol. Biochemistry 1999; 38 (21) 6903-6910
  • 28 Tang-Liu DD, Aoki KR, Dolly JO , et al. Intramuscular injection of 125I-botulinum neurotoxin-complex versus 125I-botulinum-free neurotoxin: time course of tissue distribution. Toxicon 2003; 42 (5) 461-469
  • 29 Frevert J, Dressler D. Complexing proteins in botulinum toxin type A drugs: a help or a hindrance?. Biologics 2010; 4: 325-332
  • 30 Pickett A, Perrow K. Composition and molecular size of Clostridium botulinum type A toxin-hemagglutinin complex. Protein J 2009; 28 (5) 248-249 , discussion 250–251
  • 31 Grein S, Mander GJ, Fink K. Stability of botulinum neurotoxin type A, devoid of complexing proteins. The Botulinum J 2011; 2: 49-58
  • 32 Thirunavukkarasusx N, Ghosal KJ, Kukreja R , et al. Microarray analysis of differentially regulated genes in human neuronal and epithelial cell lines upon exposure to type A botulinum neurotoxin. Biochem Biophys Res Commun 2011; 405 (4) 684-690
  • 33 Wang L, Sun Y, Yang W, Lindo P, Singh BR. Type A botulinum neurotoxin complex proteins differentially modulate host response of neuronal cells. Toxicon 2014; 82: 52-60
  • 34 Gu S, Rumpel S, Zhou J , et al. Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 2012; 335 (6071) 977-981
  • 35 Sagane Y, Miyashita S, Miyata K , et al. Small-angle X-ray scattering reveals structural dynamics of the botulinum neurotoxin associating protein, nontoxic nonhemagglutinin. Biochem Biophys Res Commun 2012; 425 (2) 256-260
  • 36 Fujinaga Y, Inoue K, Watarai S , et al. Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes. Microbiology 2004; 150 (Pt 5): 1529-1538
  • 37 Matsumura T, Sugawara Y, Yutani M , et al. Botulinum toxin A complex exploits intestinal M cells to enter the host and exert neurotoxicity. Nat Commun 2015; 6: 6255
  • 38 Eisele KH, Fink K, Vey M, Taylor HV. Studies on the dissociation of botulinum neurotoxin type A complexes. Toxicon 2011; 57 (4) 555-565
  • 39 Lee K, Gu S, Jin L , et al. Structure of a bimodular botulinum neurotoxin complex provides insights into its oral toxicity. PLoS Pathog 2013; 9 (10) e1003690
  • 40 Montecucco C, Papini E, Schiavo G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 1994; 346 (1) 92-98
  • 41 Kukreja R, Singh BR. Basic chemistry of botulinum neurotoxins relevant to vaccines, diagnostics, and countermeasures. In: Balali-Mood M, Llewellyn L, Singh B-R, , eds. Toxinology: Biological Toxins and Bioterrorism. New York: Springer; 2014: 1-33
  • 42 Nishiki T, Kamata Y, Nemoto Y , et al. Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 1994; 269 (14) 10498-10503
  • 43 Rummel A, Mahrhold S, Bigalke H, Binz T. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 2004; 51 (3) 631-643
  • 44 Dong M, Yeh F, Tepp WH , et al. SV2 is the protein receptor for botulinum neurotoxin A. Science 2006; 312 (5773) 592-596
  • 45 Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 2008; 19 (12) 5226-5237
  • 46 Mahrhold S, Strotmeier J, Garcia-Rodriguez C , et al. Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E. Biochem J 2013; 453 (1) 37-47
  • 47 Nishiki T, Tokuyama Y, Kamata Y , et al. The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett 1996; 378 (3) 253-257
  • 48 Rummel A, Eichner T, Weil T , et al. Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci U S A 2007; 104 (1) 359-364
  • 49 Zhang Y, Varnum SM. The receptor binding domain of botulinum neurotoxin serotype C binds phosphoinositides. Biochimie 2012; 94 (3) 920-923
  • 50 Schiavo G, Matteoli M, Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol Rev 2000; 80 (2) 717-766
  • 51 Montal M. Botulinum neurotoxin: a marvel of protein design. Annu Rev Biochem 2010; 79: 591-617
  • 52 Singh BR, Kumar R, Cai S. Molecular mechanism and effects of Clostridial neurotoxins. In: Kostrzewa RM, ed. Handbook of Neurotoxicity. New York: Springer; 2014: 513-542
  • 53 Couesnon A, Shimizu T, Popoff MR. Differential entry of botulinum neurotoxin A into neuronal and intestinal cells. Cell Microbiol 2009; 11 (2) 289-308
  • 54 Connan C, Popoff MR. Absorption and transport of botulinum neurotoxin. In: Foster KA, , ed. Molecular Aspects of Botulinum Neurotoxin. New York: Springer; 2014: 35 68;
  • 55 Lang T. SNARE proteins and ‘membrane rafts’. J Physiol 2007; 585 (Pt 3): 693-698
  • 56 de Paiva A, Meunier FA, Molgó J, Aoki KR, Dolly JO. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci U S A 1999; 96 (6) 3200-3205
  • 57 Duchen LW, Strich SJ. The effects of botulinum toxin on the pattern of innervation of skeletal muscle in the mouse. Q J Exp Physiol Cogn Med Sci 1968; 53 (1) 84-89
  • 58 Dressler D, Benecke R. Pharmacology of therapeutic botulinum toxin preparations. Disabil Rehabil 2007; 29 (23) 1761-1768
  • 59 Frevert J. Pharmaceutical, biological and clinical properties of botulinum neurotoxin type A products. Drugs R D 2015; 15 (1) 1-9
  • 60 Berry MG, Stanek JJ. Botulinum neurotoxin A: a review. J Plast Reconstr Aesthet Surg 2012; 65 (10) 1283-1291
  • 61 Huang PP. Intrathecal Botulinum Neurotoxin B: Effects on Spinal Primary Afferent Neurotransmitter Release, Inflammatory Nociception and Neuropathic Pain in the Mouse. San Diego, CA: University of California; 2010
  • 62 Lawrence GW, Ovsepian SV, Wang J, Aoki KR, Dolly JO. Extravesicular intraneuronal migration of internalized botulinum neurotoxins without detectable inhibition of distal neurotransmission. Biochem J 2012; 441 (1) 443-452
  • 63 Restani L, Antonucci F, Gianfranceschi L, Rossi C, Rossetto O, Caleo M. Evidence for anterograde transport and transcytosis of botulinum neurotoxin A (BoNT/A). J Neurosci 2011; 31 (44) 15650-15659
  • 64 Habermann E. 125I-labeled neurotoxin from Clostridium botulinum A: preparation, binding to synaptosomes and ascent to the spinal cord. Naunyn Schmiedebergs Arch Pharmacol 1974; 281 (1) 47-56
  • 65 Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci 2008; 28 (14) 3689-3696
  • 66 Kuehn BM. Studies, reports say botulinum toxins may have effects beyond injection site. JAMA 2008; 299 (19) 2261-2263
  • 67 Restani L, Giribaldi F, Manich M , et al. Botulinum neurotoxins A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog 2012; 8 (12) e1003087
  • 68 Black JD, Dolly JO. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves. J Cell Biol 1986; 103 (2) 521-534
  • 69 Wiegand H, Erdmann G, Wellhöner HH. 125I-labelled botulinum A neurotoxin: pharmacokinetics in cats after intramuscular injection. Naunyn Schmiedebergs Arch Pharmacol 1976; 292 (2) 161-165
  • 70 Matak I, Riederer P, Lacković Z. Botulinum toxin's axonal transport from periphery to the spinal cord. Neurochem Int 2012; 61 (2) 236-239
  • 71 Marino MJ, Terashima T, Steinauer JJ, Eddinger KA, Yaksh TL, Xu Q. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain 2014; 155 (4) 674-684
  • 72 Akaike N, Shin MC, Wakita M , et al. Transsynaptic inhibition of spinal transmission by A2 botulinum toxin. J Physiol 2013; 591 (Pt 4): 1031-1043
  • 73 Filipović B, Matak I, Bach-Rojecky L, Lacković Z. Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy. PLoS ONE 2012; 7 (1) e29803
  • 74 Pavone F, Luvisetto S. Botulinum neurotoxin for pain management: insights from animal models. Toxins (Basel) 2010; 2 (12) 2890-2913
  • 75 Bossowska A, Majewski M. Botulinum toxin type A-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder. Pol J Vet Sci 2012; 15 (2) 345-353
  • 76 Verderio C, Grumelli C, Raiteri L , et al. Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 2007; 8 (2) 142-153
  • 77 Frassoni C, Inverardi F, Coco S , et al. Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and in situ. Neuroscience 2005; 131 (4) 813-823
  • 78 Verderio C, Pozzi D, Pravettoni E , et al. SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 2004; 41 (4) 599-610
  • 79 Huang X, Wheeler MB, Kang YH , et al. Truncated SNAP-25 (1-197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol Endocrinol 1998; 12 (7) 1060-1070
  • 80 Criado M, Gil A, Viniegra S, Gutiérrez LM. A single amino acid near the C terminus of the synaptosome associated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells. Proc Natl Acad Sci U S A 1999; 96 (13) 7256-7261
  • 81 Grumelli C, Corradini I, Matteoli M, Verderio C. Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations. Cell Calcium 2010; 47 (5) 419-424
  • 82 Pozzi D, Condliffe S, Bozzi Y , et al. Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci U S A 2008; 105 (1) 323-328
  • 83 Kitamura Y, Matsuka Y, Spigelman I , et al. Botulinum toxin type a (150 kDa) decreases exaggerated neurotransmitter release from trigeminal ganglion neurons and relieves neuropathy behaviors induced by infraorbital nerve constriction. Neuroscience 2009; 159 (4) 1422-1429
  • 84 Durham PL, Cady R, Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache 2004; 44 (1) 35-42 , discussion 42–43
  • 85 Meng J, Wang J, Lawrence G, Dolly JO. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci 2007; 120 (Pt 16): 2864-2874
  • 86 Bossowska A, Majewski M. Botulinum toxin type A-induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder. Pol J Vet Sci 2012; 15 (2) 345-353
  • 87 Tsui JKC, Eisen A, Stoessl AJ, Calne S, Calne DB. Double-blind study of botulinum toxin in spasmodic torticollis. Lancet 1986; 2 (8501) 245-247
  • 88 Göbel H. Botulinum toxin in migraine prophylaxis. J Neurol 2004; 251 (Suppl. 01) I8-I11
  • 89 Allam N, Brasil-Neto JP, Brown G, Tomaz C. Injections of botulinum toxin type a produce pain alleviation in intractable trigeminal neuralgia. Clin J Pain 2005; 21 (2) 182-184
  • 90 Ranoux D, Attal N, Morain F, Bouhassira D. Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain. Ann Neurol 2008; 64 (3) 274-283
  • 91 Mahowald ML, Singh JA, Dykstra D. Long term effects of intra-articular botulinum toxin A for refractory joint pain. Neurotox Res 2006; 9 (2–3) 179-188
  • 92 Jabbari B. Evidence based medicine in the use of botulinum toxin for back pain. J Neural Transm (Vienna) 2008; 115 (4) 637-640
  • 93 Burstein R, Zhang X, Levy D, Aoki KR, Brin MF. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications for migraine and other pains. Cephalalgia 2014; 34 (11) 853-869
  • 94 Shimizu T, Shibata M, Toriumi H , et al. Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A. Neurobiol Dis 2012; 48 (3) 367-378
  • 95 Vacca V, Marinelli S, Luvisetto S, Pavone F. Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and μ opioid receptor expression in neuropathic mice. Brain Behav Immun 2013; 32: 40-50
  • 96 Aoki KR. Evidence for antinociceptive activity of botulinum toxin type A in pain management. Headache 2003; 43 (Suppl. 01) S9-S15
  • 97 Baulmann J, Spitznagel H, Herdegen T, Unger T, Culman J. Tachykinin receptor inhibition and c-Fos expression in the rat brain following formalin-induced pain. Neuroscience 2000; 95 (3) 813-820
  • 98 Cui M, Khanijou S, Rubino J, Aoki KR. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 2004; 107 (1–2) 125-133
  • 99 Dressler D, Bigalke H, Benecke R. Botulinum toxin type B in antibody-induced botulinum toxin type A therapy failure. J Neurol 2003; 250 (8) 967-969
  • 100 Klein AW. Complications and adverse reactions with the use of botulinum toxin. Semin Cutan Med Surg 2001; 20 (2) 109-120
  • 101 Baizabal-Carvallo JF. Can the immunological response to botulinum toxin trigger headaches?. Neurotox Res 2015; 27 (1) 69-70
  • 102 Ray P, Berman JD, Middleton W, Brendle J. Botulinum toxin inhibits arachidonic acid release associated with acetylcholine release from PC12 cells. J Biol Chem 1993; 268 (15) 11057-11064
  • 103 Ishida H, Zhang X, Erickson K, Ray P. Botulinum toxin type A targets RhoB to inhibit lysophosphatidic acid-stimulated actin reorganization and acetylcholine release in nerve growth factor-treated PC12 cells. J Pharmacol Exp Ther 2004; 310 (3) 881-889
  • 104 Coffield JA, Yan X. Neuritogenic actions of botulinum neurotoxin A on cultured motor neurons. J Pharmacol Exp Ther 2009; 330 (1) 352-358
  • 105 Proietti S, Nardicchi V, Porena M, Giannantoni A. [Botulinum toxin type-A toxin activity on prostate cancer cell lines]. Urologia 2012; 79 (2) 135-141
  • 106 Bandala C, Perez-Santos JLM, Lara-Padilla E, Delgado Lopez G, Anaya-Ruiz M. Effect of botulinum toxin A on proliferation and apoptosis in the T47D breast cancer cell line. Asian Pac J Cancer Prev 2013; 14 (2) 891-894
  • 107 Kumar R, Zhou Y, Ghosal K, Cai S, Singh BR. Anti-apoptotic activity of hemagglutinin-33 and botulinum neurotoxin and its implications to therapeutic and countermeasure issues. Biochem Biophys Res Commun 2012; 417 (2) 726-731
  • 108 Oh SH, Lee Y, Seo YJ , et al. The potential effect of botulinum toxin type A on human dermal fibroblasts: an in vitro study. Dermatol Surg 2012; 38 (10) 1689-1694
  • 109 Jeftinija SD, Jeftinija KV, Stefanovic G. Cultured astrocytes express proteins involved in vesicular glutamate release. Brain Res 1997; 750 (1–2) 41-47
  • 110 Alderton JM, Ahmed SA, Smith LA, Steinhardt RA. Evidence for a vesicle-mediated maintenance of store-operated calcium channels in a human embryonic kidney cell line. Cell Calcium 2000; 28 (3) 161-169
  • 111 Naumann MK, Hamm H, Lowe NJ ; Botox Hyperhidrosis Clinical Study Group. Effect of botulinum toxin type A on quality of life measures in patients with excessive axillary sweating: a randomized controlled trial. Br J Dermatol 2002; 147 (6) 1218-1226
  • 112 Souayah N, Karim H, Kamin SS, McArdle J, Marcus S. Severe botulism after focal injection of botulinum toxin. Neurology 2006; 67 (10) 1855-1856
  • 113 Keller JE, Neale EA, Oyler G, Adler M. Persistence of botulinum neurotoxin action in cultured spinal cord cells. FEBS Lett 1999; 456 (1) 137-142
  • 114 Adler M, Keller JE, Sheridan RE, Deshpande SS. Persistence of botulinum neurotoxin A demonstrated by sequential administration of serotypes A and E in rat EDL muscle. Toxicon 2001; 39 (2–3) 233-243
  • 115 Meunier FA, Lisk G, Sesardic D, Dolly JO. Dynamics of motor nerve terminal remodeling unveiled using SNARE-cleaving botulinum toxins: the extent and duration are dictated by the sites of SNAP-25 truncation. Mol Cell Neurosci 2003; 22 (4) 454-466
  • 116 Fernández-Salas E, Steward LE, Ho H , et al. Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc Natl Acad Sci U S A 2004; 101 (9) 3208-3213
  • 117 Tsai YC, Maditz R, Kuo CL , et al. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci U S A 2010; 107 (38) 16554-16559
  • 118 Walsh CT. Posttranslational Modification of Proteins. 1st ed. Englewood, CO: Roberts and Co; 2006
  • 119 Ferrer-Montiel AV, Canaves JM, DasGupta BR, Wilson MC, Montal M. Tyrosine phosphorylation modulates the activity of clostridial neurotoxins. J Biol Chem 1996; 271 (31) 18322-18325
  • 120 Wang J, Zurawski TH, Meng J , et al. A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J Biol Chem 2011; 286 (8) 6375-6385
  • 121 Ibañez C, Blanes-Mira C, Fernandez-Ballester G, Planells-Cases R, Ferres-Montiel A. Modulation of botulinum neurotoxin A catalytic domain stability by tyrosine phosphorylation. FEBS Lett 2004; 578 (1–2) 121-127
  • 122 Toth S, Brueggmann EE, Oyler GA, Smith LA, Hines HB, Ahmed SA. Tyrosine phosphorylation of botulinum neurotoxin protease domains. Front Pharmacol 2012; 3: 102