Synlett 2016; 27(19): 2731-2733
DOI: 10.1055/s-0035-1562525
letter
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Construction of Polyether trans-Pyran Ring System by Gold(I)-Catalyzed Cyclization

Hajime Yokoyama*
Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan   Email: hyokoyam@sci.u-toyama.ac.jp
,
Megumi Matsuo
Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan   Email: hyokoyam@sci.u-toyama.ac.jp
,
Masahiro Miyazawa
Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan   Email: hyokoyam@sci.u-toyama.ac.jp
,
Yoshiro Hirai
Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan   Email: hyokoyam@sci.u-toyama.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 26 May 2016

Accepted after revision: 04 July 2016

Publication Date:
01 August 2016 (online)


Abstract

Many natural polyether toxins contain the trans-pyran ladder structure. We describe a synthesis of the polyether trans-pyran ring system by using cationic gold(I)-catalyzed cyclization. This gold(I)-catalyzed cyclization provided high diastereoselectivity and high turnover. This method is expected to be applicable to the synthesis of polyethers.

Supporting Information

 
  • References and Notes

    • 1a Blunt JW, Copp BR, Munro MH. G, Northcote PT, Prinsep MR. Nat. Prod. Rep. 2004; 21: 1
    • 1b Faulkner DJ. Nat. Prod. Rep. 2002; 19: 1
    • 2a Kadota I, Yamamoto Y. Acc. Chem. Res. 2005; 38: 423
    • 2b Nakata T. Chem. Rev. 2005; 105: 4314
    • 2c Inoue M. Chem. Rev. 2005; 105: 4379
    • 2d Alvarez E, Candenas M.-L, Perez R, Ravelo JL, Martin JD. Chem. Rev. 1995; 95: 1953
    • 3a Murata M, Kumagai M, Lee JS, Yasumoto T. Tetrahedron Lett. 1987; 28: 5869
    • 3b Scheuer PJ. Tetrahedron 1994; 50: 3
    • 3c Satake M, Terasawa K, Kadowaki Y, Yasumoto T. Tetrahedron Lett. 1996; 37: 5955
    • 3d Takahashi H, Kusumi T, Kan Y, Satake M, Yasumoto T. Tetrahedron Lett. 1996; 37: 7087
    • 3e Morohashi A, Satake M, Oshima Y, Yasumoto Y. Biosci. Biotechnol. Biochem. 2000; 64: 1761
    • 3f Yasumoto T. Chem. Rec. 2001; 1: 228
    • 3g Mori Y, Hayashi H. Tetrahedron 2002; 58: 1789
    • 3h Suzuki K, Nakata T. Org. Lett. 2002; 4: 3943
    • 3i Mori Y, Nogami K, Hayashi H, Noyori R. J. Org. Chem. 2003; 68: 9050
    • 3j Mori Y, Takase T, Noyori R. Tetrahedron Lett. 2003; 44: 2319
    • 3k Oishi T, Watanabe K, Murata M. Tetrahedron Lett. 2003; 44: 7315
    • 3l Kadota I, Ueno H, Yamamoto Y. Tetrahedron Lett. 2003; 44: 8935
    • 3m Watanabe K, Suzuki M, Murata M, Oishi T. Tetrahedron Lett. 2005; 46: 3991
    • 3n Kadota I, Ueno H, Sato Y. Yamamoto Y. 2006; 47: 89
    • 3o Oishi T, Suzuki M, Watanabe K, Murata M. Tetrahedron Lett. 2006; 47: 3975
    • 3p Kadota I, Abe T, Sato Y, Kabuto C, Yamamoto Y. Tetrahedron Lett. 2006; 47: 6545
    • 3q Torikai K, Watanabe K, Minato H, Imaizumi T, Murata M, Oishi T. Synlett 2008; 15: 2368
    • 3r Akoto CO, Rainier JD. Angew. Chem. Int. Ed. 2008; 47: 8055
    • 3s Oishi T, Imaizumi T, Murata M. Chem. Lett. 2010; 39: 108
    • 3t Sakai T, Sugimoto A, Tatematsu H, Mori Y. J. Org. Chem. 2012; 77: 11177
    • 3u Czabaniuk LC, Jamison TF. Org. Lett. 2015; 17: 774
    • 3v Zhang Y, Rainier JD. J. Antibiot. 2016; 69: 259
    • 4a Harrington PJ, Hegedus LS, McDaniel KF. J. Am. Chem. Soc. 1987; 109: 4335
    • 4b Saito S, Hara T, Takahashi N, Hirai M, Moriwake T. Synlett 1992; 237
    • 4c Hirai Y, Terada T, Amemiya Y, Momose T. Tetrahedron Lett. 1992; 33: 7893
    • 4d Hirai Y, Nagatsu M. Chem. Lett. 1994; 23: 21
    • 4e Makabe H, Kong LK, Hirota M. Org. Lett. 2003; 5: 27
    • 4f Uenishi J, Ohmi M, Ueda A. Tetrahedron: Asymmetry 2005; 16: 1299
    • 4g Kawai N, Lagrange J.-M, Ohmi M, Uenishi J. J. Org. Chem. 2006; 71: 4530
    • 4h Kawai N, Hande SM, Uenishi J. Tetrahedron 2007; 63: 9049
    • 4i Uenishi J, Vikhe YS, Kawai N. Chem. Asian J. 2008; 3: 473
    • 4j Hande SM, Kawai N, Uenishi J. J. Org. Chem. 2009; 74: 244
    • 4k Vikhe YS, Hande SM, Kawai N, Uenishi J. J. Org. Chem. 2009; 74: 5174
    • 4l Hande SM, Uenishi J. Tetrahedron Lett. 2009; 50: 189
    • 4m Uenishi J, Fujikura Y, Kawai N. Org. Lett. 2011; 13: 2350
    • 4n Borrero NV, Aponick A. J. Org. Chem. 2012; 77: 8410
    • 4o Ghebreghiorgis T, Kirk BH, Aponick A, Ess DH. J. Org. Chem. 2013; 78: 7664
    • 5a Yokoyama H, Shouji Y, Kubo T, Miyazawa M, Hirai Y. Heterocycles 2015; 91: 1752
    • 5b Yokoyama H, Kubo T, Matsumura Y, Hosokawa J, Miyazawa M, Hirai Y. Tetrahedron 2014; 70: 9530
    • 5c Yokoyama H, Kusumoto Y, Sumiyoshi K, Miyazawa M, Hirai Y. Heterocycles 2014; 89: 353
    • 5d Yokoyama H, Hayashi Y, Nagasawa Y, Ejiri H, Miyazawa M, Hirai Y. Tetrahedron 2010; 66: 8458
    • 5e Yokoyama H, Nakayama S, Murase M, Miyazawa M, Yamaguchi S, Hirai Y. Heterocycles 2009; 77: 211
    • 5f Yokoyama H, Hirai Y. Heterocycles 2008; 75: 2133
    • 5g Yokoyama H, Kobayashi H, Miyazawa M, Yamaguchi S, Hirai Y. Heterocycles 2007; 74: 283
    • 5h Yokoyama H, Ejiri H, Miyazawa M, Yamaguchi S, Hirai Y. Tetrahedron: Asymmetry 2007; 18: 852
    • 5i Miyazawa M, Hirose Y, Narantsetsetseg M, Yokoyama H, Yamaguchi S, Hirai Y. Tetrahedron Lett. 2004; 45: 2883
    • 5j Miyazawa M, Narantsetseg M, Yokoyama H, Yamaguchi S, Hirai Y. Heterocycles 2004; 63: 1017
    • 5k Yokoyama H, Otaya K, Kobayashi H, Miyazawa M, Yamaguchi S, Hirai Y. Org. Lett. 2000; 2: 2427
    • 5l Yokoyama H, Otaya K, Yamaguchi S, Hirai Y. Tetrahedron Lett. 1998; 39: 5971
    • 5m Hirai Y, Watanabe J, Nozaki T, Yokoyama H, Yamaguchi S. J. Org. Chem. 1997; 62: 776
    • 6a Aponick A, Li C-Y, Biannic B. Org. Lett. 2008; 10: 669
    • 6b Aponick A, Biannic B. Synthesis 2008; 3356
    • 6c Aponick A, Biannic B. Org. Lett. 2011; 13: 1330
    • 6d Ghebreghiorgis T, Biannic B, Kirk BH, Ess DH, Aponick A. J. Am. Chem. Soc. 2012; 134: 16307
    • 6e Unsworth WP, Stevens K, Lamont SG, Robertson J. Chem. Commun. 2011; 47: 7659
  • 7 Mukherjee P, Widenhoefer RA. Org. Lett. 2010; 12: 1184
  • 8 Takai S, Isobe M. Org. Lett. 2002; 4: 1183
  • 9 2-Vinyloctahydropyrano[3,2-b]pyran-3-ol (9) Dry CH2Cl2 (1 mL) was added to an aluminum-foil-covered two-necked flask containing PPh3AuCl (16 mg, 0.03 mmol), AgOTf (7.9 mg, 0.03 mmol), and activated MS4Å (26 mg). After stirring for 10 min, a solution of triol 7 (51.3 mg, 0.25 mmol) in dry THF (1 mL) was added. After the mixture was stirred for 7 d and 20 h, it was diluted with CH2Cl2, and the mixture was filtered through a short plug of silica. The eluent was concentrated and the residue was purified on silica gel column chromatography (hexane–EtOAc = 70:30, v/v) to give the alcohol 9 (36.2 mg, 80%) as a single isomer and a colorless oil. Analytical Data of 9 1HNMR (600 MHz, CDCl3): δ = 5.82 (ddd, J = 17.59, 10.62, 7.33 Hz, 1 H), 5.40 (d, J = 17.89 Hz, 1 H), 5.32 (d, J = 10.26 Hz, 1 H), 3.90–3.87 (m, 1 H), 3.56–3.54(m, 1 H), 3.44–3.40 (m, 1 H), 3.38–3.31 (m, 1 H), 3.01–2.99 (m, 2 H), 2.38–2.35 (m, 1 H), 2.07–1.92 (m, 2 H), 1.73–1.69 (m, 2 H), 1.45–1.39 (m, 1 H). 13C NMR (150 MHz, CD3OD): δ = 135.7, 119.7, 83.9, 77.7, 76.8, 69.1, 68.0, 38.0, 29.3, 25.6. IR (nujol): 3395, 2925, 2865, 1460, 1090, 1029 cm–1. MS (EI): m/z = 184 [M+]. HRMS (EI): m/z calcd for C10H14O2 [M+ – H2O]: 166.0994; found: 166.1000.
  • 10 We reported the conversion of 11 into 9 previously: Ref. 5.
  • 11 Suzuki Y, Kuwabara A, Koizumi Y, Mori Y. Tetrahedron 2013; 69: 9086