Klin Padiatr 2015; 227(03): 108-115
DOI: 10.1055/s-0035-1545263
Review
© Georg Thieme Verlag KG Stuttgart · New York

Development of Curative Therapies for Ewing Sarcomas by Interdisciplinary Cooperative Groups in Europe

Entwicklung kurativer Therapien für Ewing-Sarkome durch interdisziplinäre Kooperationen in Europa
T. Bölling
2   Department Osnabrueck, Center for Radiotherapy Rheine-Osnabrueck, Osnabrueck, Germany
,
G. Braun-Munzinger
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
S. Burdach
3   Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
,
G. Calaminus
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
A. Craft
4   Royal Victoria Infirmary, Newcastle, United Kingdom
,
O. Delattre
5   Inserm U830, Laboratory of Genetics and Biology of Cancers, Institut Curie, Paris, France
,
M.-C. L. Deley
6   Université Paris-Sud, Le Kremlin-Bicêtre, and Gustave Roussy Institute, Villejuif, France
,
U. Dirksen
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
B. Dockhorn-Dworniczak
7   Zentrum für Pathologie Kempten-Allgäu, Kempten, Germany
,
J. Dunst
8   Department of Radiation Oncology, University of Luebeck and University Medical Center Schleswig-Holstein, Campus Luebeck, Germany
,
S. Engel
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
A. Faldum
9   Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
,
B. Fröhlich
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
H. Gadner
10   St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, and Department of Pediatrics, Medical University Vienna
,
U. Göbel
11   Clinic of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Duesseldorf, Germany
,
G. Gosheger
12   Department of Orthopedic Surgery, University Hospital Muenster, Muenster, Germany
,
J. Hardes
12   Department of Orthopedic Surgery, University Hospital Muenster, Muenster, Germany
,
D. S. Hawkins
13   Seattle Children’s Hospital and Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
,
L. Hjorth
14   Skåne University Hospital, Lund University, Lund, Sweden
,
C. Hoffmann
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
H. Kovar
10   St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, and Department of Pediatrics, Medical University Vienna
,
J. Kruseova
15   Department of Paediatric Haematology and Oncology Charles University, 2nd School of Medicine, Prague, Czech Republic
,
R. Ladenstein
10   St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, and Department of Pediatrics, Medical University Vienna
,
I. Leuschner
16   Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, Christian-Albrechts-University Kiel, Kiel, Germany
,
I. J. Lewis
17   Alder Hey Children’s National Health Service Foundation Trust, Liverpool, UK
,
O. Oberlin
18   Gustave Roussy Institute, Villejuif, France
,
M. Paulussen
19   Vestische Kinder-und Jugendklinik Datteln, Witten/Herdecke University, Datteln, Germany
,
J. Potratz
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
A. Ranft
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
C. Rössig
1   Pediatric Hematology and Oncology Muenster, University Children’s Hospital Muenster, Germany
,
C. Rübe
20   Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Homburg, Germany
,
R. Sauer
21   Department of Radiation Therapy, University of Erlangen, Erlangen, Germany
,
O. Schober
22   Department of Nuclear Medicine, University of Münster, Münster, Germany
,
A. Schuck
23   Department of Radiotherapy, University Hospital Muenster, Muenster, Germany
,
B. Timmermann
24   Clinic for Particle Therapy, West German Proton Therapy Center Essen, West German Cancer Center, University Hospital Essen
,
F. Tirode
5   Inserm U830, Laboratory of Genetics and Biology of Cancers, Institut Curie, Paris, France
,
H. van den Berg
25   Emma Children Hospital AMC, University of Amsterdam, Amsterdam, the Netherlands
,
F. van Valen
26   Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
,
V. Vieth
27   Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany
,
N. Willich
23   Department of Radiotherapy, University Hospital Muenster, Muenster, Germany
,
W. Winkelmann
12   Department of Orthopedic Surgery, University Hospital Muenster, Muenster, Germany
,
J. Whelan
28   NIHR University College London Hospitals Biomedical Research Centre, London, UK
,
R. B. Womer*
29   Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
18 May 2015 (online)

Abstract

Curative therapies for Ewing sarcoma have been developed within cooperative groups. Consecutive clinical trials have systematically assessed the impact and timing of local therapy and the activity of cytotoxic drugs and their combinations. They have led to an increase of long-term disease-free survival to around 70% in patients with localized disease. Translational research in ES remains an area in which interdisciplinary and international cooperation is essential for future progress. This article reviews current state-of-the art therapy, with a focus on trials performed in Europe, and summarizes novel strategies to further advance both the cure rates and quality of survival.

Zusammenfassung

Kurative Therapien für Ewing-Sarkome sind das Ergebnis systematischer Kooperation in interdisziplinären Studiengruppen. In konsekutiven klinischen Studien sind die verschiedenen Aspekte der Therapie, wie die Bedeutung und der optimale Zeitpunkt der Lokaltherapie und die Aktivität individueller zytotoxischer Medikamente und ihrer Kombinationen, optimiert worden. Diese Therapiestudien haben zu einem Anstieg des langfristigen ereignisfreien Überlebens auf bis zu 70% bei Patienten mit lokalisierter Erkrankung geführt. Für zukünftige Fortschritte bei dieser Erkrankung bleibt eine intensive interdisziplinäre und internationale Kooperation im Rahmen klinisch-translationaler Forschungsprojekte auch weiter unverzichtbar. Mit einem Fokus auf in Europa durchgeführten klinischen Studien fasst dieser Artikel die Rationale für die aktuellen Therapiestandards zusammen, sowie neue Therapiestrategien, die dem Ziel dienen, die Heilungsraten sowie die Qualität des Überlebens weiter zu steigern.

* The authors dedicate this review to Heribert Jürgens to acknowledge his leadership role and his friendship and cooperation in clinical research of Ewing sarcoma.


 
  • References

  • 1 Ahrens S, Hoffmann C, Jabar S et al. Evaluation of prognostic factors in a tumor volume-adapted treatment strategy for localized Ewing sarcoma of bone: the CESS 86 experience. Cooperative Ewing Sarcoma Study. Med Pediatr Oncol 1999; 32: 186-195
  • 2 Bacci G, Ferrari S, Longhi A et al. Therapy and survival after recurrence of Ewing’s tumors: the Rizzoli experience in 195 patients treated with adjuvant and neoadjuvant chemotherapy from 1979 to 1997. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 2003; 14: 1654-1659
  • 3 Bacci G, Longhi A, Briccoli A et al. The role of surgical margins in treatment of Ewing’s sarcoma family tumors: experience of a single institution with 512 patients treated with adjuvant and neoadjuvant chemotherapy. International journal of radiation oncology, biology, physics 2006; 65: 766-772
  • 4 Bacci G, Toni A, Avella M et al. Long-term results in 144 localized Ewing’s sarcoma patients treated with combined therapy. Cancer 1989; 63: 1477-1486
  • 5 Barker LM, Pendergrass TW, Sanders JE et al. Survival after recurrence of Ewing’s sarcoma family of tumors. J Clin Oncol 2005; 23: 4354-4362
  • 6 Berger M, Dirksen U, Braeuninger A et al. Genomic EWS-FLI1 fusion sequences in Ewing sarcoma resemble breakpoint characteristics of immature lymphoid malignancies. PLoS One 2013; 8: e56408
  • 7 Bolling T, Schuck A, Paulussen M et al. Whole lung irradiation in patients with exclusively pulmonary metastases of Ewing tumors. Toxicity analysis and treatment results of the EICESS-92 trial. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al.] 2008; 184: 193-197
  • 8 Boro A, Pretre K, Rechfeld F et al. Small-molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing’s sarcoma. Int J Cancer 2012; 131: 2153-2164
  • 9 Bosch X. Europe’s restrictive rules strangling clinical research. Nat Med 2005; 11: 1260
  • 10 Boyer Jr CW, Brickner Jr TJ, Perry RH. Ewing’s sarcoma: case against surgery. Cancer 1967; 20: 1602-1606
  • 11 Brohl AS, Solomon DA, Chang W et al. The Genomic Landscape of the Ewing Sarcoma Family of Tumors Reveals Recurrent STAG2 Mutation. PLoS genetics 2014; 10: e1004475
  • 12 Burdach S, Jurgens H, Peters C et al. Myeloablative radiochemotherapy and hematopoietic stem-cell rescue in poor-prognosis Ewing’s sarcoma. J Clin Oncol 1993; 11: 1482-1488
  • 13 Burdach S, Meyer-Bahlburg A, Laws HJ et al. High-dose therapy for patients with primary multifocal and early relapsed Ewing’s tumors: results of two consecutive regimens assessing the role of total-body irradiation. J Clin Oncol 2003; 21: 3072-3078
  • 14 Burdach S, van Kaick B, Laws HJ et al. Allogeneic and autologous stem-cell transplantation in advanced Ewing tumors. An update after long-term follow-up from two centers of the European Intergroup study EICESS. Stem-Cell Transplant Programs at Dusseldorf University Medical Center, Germany and St. Anna Kinderspital, Vienna, Austria. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 2000; 11: 1451-1462
  • 15 Cornbleet MA, Corringham RE, Prentice HG et al. Treatment of Ewing’s sarcoma with high-dose melphalan and autologous bone marrow transplantation. Cancer treatment reports 1981; 65: 241-244
  • 16 Cotterill SJ, Ahrens S, Paulussen M et al. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 2000; 18: 3108-3114
  • 17 Craft A, Cotterill S, Malcolm A et al. Ifosfamide-containing chemotherapy in Ewing’s sarcoma: The Second United Kingdom Children’s Cancer Study Group and the Medical Research Council Ewing’s Tumor Study. J Clin Oncol 1998; 16: 3628-3633
  • 18 Craft AW, Cotterill SJ, Bullimore JA et al. Long-term results from the first UKCCSG Ewing’s Tumour Study (ET-1). United Kingdom Children’s Cancer Study Group (UKCCSG) and the Medical Research Council Bone Sarcoma Working Party. Eur J Cancer 1997; 33: 1061-1069
  • 19 Daldrup-Link HE, Franzius C, Link TM et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR American journal of roentgenology 2001; 177: 229-236
  • 20 Delattre O, Zucman J, Melot T et al. The Ewing family of tumors – a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 1994; 331: 294-299
  • 21 Delattre O, Zucman J, Plougastel B et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359: 162-165
  • 22 Dockhorn-Dworniczak B, Schafer KL, Dantcheva R et al. Diagnostic value of the molecular genetic detection of the t(11;22) translocation in Ewing’s tumours. Virchows Archiv: an international journal of pathology 1994; 425: 107-112
  • 23 Donaldson SS. Ewing sarcoma: radiation dose and target volume. Pediatr Blood Cancer 2004; 42: 471-476
  • 24 Donaldson SS, Torrey M, Link MP et al. A multidisciplinary study investigating radiotherapy in Ewing’s sarcoma: end results of POG #8346. Pediatric Oncology Group. International journal of radiation oncology, biology, physics 1998; 42: 125-135
  • 25 DuBois SGK, Cook EF, Tarbell NJ et al. Evaluation of local control in patients with non-metastatic Ewing sarcoma of the bone: A report from the Children’s Oncology Group. J Clin Oncol 2007; 25: 10013
  • 26 Dunst J, Jurgens H, Sauer R et al. Radiation therapy in Ewing’s sarcoma: an update of the CESS 86 trial. International journal of radiation oncology, biology, physics 1995; 32: 919-930
  • 27 Enneking WF. Musculoskeletal Tumour Surgery. Edinburgh: Churchill Livingstone; 1983
  • 28 Erkizan HV, Kong Y, Merchant M et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med 2009; 15: 750-756
  • 29 Evans HB, Brown S, Hurst LN. The effects of early postoperative radiation on vascularized bone grafts. Annals of plastic surgery 1991; 26: 505-510
  • 30 Ewing J. Diffuse endothelioma of bone. Proc N Y Path Soc 1921; 7: 17-24
  • 31 Ferrari S, Sundby Hall K, Luksch R et al. Nonmetastatic Ewing family tumors: high-dose chemotherapy with stem cell rescue in poor responder patients. Results of the Italian Sarcoma Group/Scandinavian Sarcoma Group III protocol. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 2011; 22: 1221-1227
  • 32 Franzius C, Sciuk J, Brinkschmidt C et al. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clinical nuclear medicine 2000; 25: 874-881
  • 33 Gebert C, Wessling M, Hoffmann C et al. Hip transposition as a limb salvage procedure following the resection of periacetabular tumors. Journal of surgical oncology 2011; 103: 269-275
  • 34 Gerth HU, Juergens KU, Dirksen U et al. Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2007; 48: 1932-1939
  • 35 Ginsberg JP, de Alava E, Ladanyi M et al. EWS-FLI1 and EWS-ERG gene fusions are associated with similar clinical phenotypes in Ewing’s sarcoma. J Clin Oncol 1999; 17: 1809-1814
  • 36 Ginsberg JP, Goodman P, Leisenring W et al. Long-term survivors of childhood Ewing sarcoma: report from the childhood cancer survivor study. J Natl Cancer Inst 2010; 102: 1272-1283
  • 37 Gobel V, Jurgens H, Etspuler G et al. Prognostic significance of tumor volume in localized Ewing’s sarcoma of bone in children and adolescents. Journal of cancer research and clinical oncology 1987; 113: 187-191
  • 38 Grier HE, Krailo MD, Tarbell NJ et al. Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. N Engl J Med 2003; 348: 694-701
  • 39 Grohar PJ, Segars LE, Yeung C et al. Dual targeting of EWS-FLI1 activity and the associated DNA damage response with trabectedin and SN38 synergistically inhibits Ewing sarcoma cell growth. Clin Cancer Res 2014; 20: 1190-1203
  • 40 Grohar PJ, Woldemichael GM, Griffin LB et al. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst 2011; 103: 962-978
  • 41 Haeusler J, Ranft A, Boelling T et al. The Value of Local Treatment in Patients With Primary, Disseminated, Multifocal Ewing Sarcoma (PDMES). Cancer 2010; 116: 443-450
  • 42 Hamdan R, Zhou Z, Kleinerman ES. Blocking SDF-1alpha/CXCR4 Downregulates PDGF-B and Inhibits Bone Marrow-Derived Pericyte Differentiation and Tumor Vascular Expansion in Ewing Tumors. Molecular cancer therapeutics 2014; 13: 483-491
  • 43 Hardes J, von Eiff C, Streitbuerger A et al. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. Journal of surgical oncology 2010; 101: 389-395
  • 44 Hartmann M, Hartmann-Vareilles F. The clinical trials directive: how is it affecting Europe’s noncommercial research?. PLoS clinical trials 2006; 1: e13
  • 45 Hu-Lieskovan S, Zhang J, Wu L et al. EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing’s family of tumors. Cancer Res 2005; 65: 4633-4644
  • 46 Hunold A, Weddeling N, Paulussen M et al. Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing tumors. Pediatr Blood Cancer 2006; 47: 795-800
  • 47 Jaffe N, Traggis D, Salian S et al. Improved Outlook for Ewings Sarcoma with Combination Chemotherapy (Vincristine, Actinomycin-D and Cyclophosphamide) and Radiation-Therapy. Cancer 1976; 38: 1925-1930
  • 48 Juergens H, Daw NC, Geoerger B et al. Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol 2011; 29: 4534-4540
  • 49 Jurgens H. Treatment of Ewing Sarcoma in Children and Adolescents – A Cooperative Study of the German-Society of Pediatric Oncology. Klin Padiatr 1981; 193: 254-257
  • 50 Jurgens H, Exner U, Gadner H et al. Multidisciplinary Treatment of Primary Ewings-Sarcoma of Bone – A 6-Year Experience of A European Cooperative Trial. Cancer 1988; 61: 23-32
  • 51 Kailayangiri S, Altvater B, Meltzer J et al. The ganglioside antigen G(D2) is surface-expressed in Ewing sarcoma and allows for MHC-independent immune targeting. Br J Cancer 2012; 106: 1123-1133
  • 52 Kreuter M, Paulussen M, Boeckeler J et al. Clinical significance of Vascular Endothelial Growth Factor – A expression in Ewing’s sarcoma. Eur J Cancer 2006; 42: 1904-1911
  • 53 Ladenstein R, Potschger U, Le Deley MC et al. Primary Disseminated Multifocal Ewing Sarcoma: Results of the Euro-EWING 99 Trial. J Clin Oncol 2010; 28: 3284-3291
  • 54 Lawrence MS, Stojanov P, Mermel CH et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495-501
  • 55 Le Deley MC, Delattre O, Schaefer KL et al. Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol 2010; 28: 1982-1988
  • 56 Le Deley MC, Paulussen M, Lewis I et al. Cyclophosphamide Compared With Ifosfamide in Consolidation Treatment of Standard-Risk Ewing Sarcoma: Results of the Randomized Noninferiority Euro-EWING99-R1 Trial. J Clin Oncol 2014; DOI: 10.1200/JCO.2013.54.4833.
  • 57 Leavey PJ, Mascarenhas L, Marina N et al. Prognostic factors for patients with Ewing sarcoma (EWS) at first recurrence following multi-modality therapy: A report from the Children’s Oncology Group. Pediatr Blood Cancer 2008; 51: 334-338
  • 58 Lin PP, Jaffe N, Herzog CE et al. Chemotherapy response is an important predictor of local recurrence in Ewing sarcoma. Cancer 2007; 109: 603-611
  • 59 Malempati S, Weigel B, Ingle AM et al. Phase I/II trial and pharmacokinetic study of cixutumumab in pediatric patients with refractory solid tumors and Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 2012; 30: 256-262
  • 60 Marcus Jr RB, Cantor A, Heare TC et al. Local control and function after twice-a-day radiotherapy for Ewing’s sarcoma of bone. International journal of radiation oncology, biology, physics 1991; 21: 1509-1515
  • 61 May WA, Lessnick SL, Braun BS et al. The Ewing’s sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 1993; 13: 7393-7398
  • 62 Nagarajan R, Clohisy DR, Neglia JP et al. Function and quality-of-life of survivors of pelvic and lower extremity osteosarcoma and Ewing’s sarcoma: the Childhood Cancer Survivor Study. Br J Cancer 2004; 91: 1858-1865
  • 63 Navid F, Willert JR, McCarville MB et al. Combination of gemcitabine and docetaxel in the treatment of children and young adults with refractory bone sarcoma. Cancer 2008; 113: 419-425
  • 64 Oberlin O, Rey A, Desfachelles AS et al. Impact of high-dose busulfan plus melphalan as consolidation in metastatic Ewing tumors: a study by the Societe Francaise des Cancers de l’Enfant. J Clin Oncol 2006; 24: 3997-4002
  • 65 Ozaki T, Hillmann A, Hoffmann C et al. Significance of surgical margin on the prognosis of patients with Ewing’s sarcoma. A report from the Cooperative Ewing’s Sarcoma Study. Cancer 1996; 78: 892-900
  • 66 Pappo AS, Patel SR, Crowley J et al. R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J Clin Oncol 2011; 29: 4541-4547
  • 67 Paulides M, Kremers A, Stohr W et al. Prospective longitudinal evaluation of doxorubicin-induced cardiomyopathy in sarcoma patients: a report of the late effects surveillance system (LESS). Pediatr Blood Cancer 2006; 46: 489-495
  • 68 Paulussen M, Ahrens S, Burdach S et al. Primary metastatic (stage IV) Ewing tumor: survival analysis of 171 patients from the EICESS studies. European Intergroup Cooperative Ewing Sarcoma Studies. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 1998; 9: 275-281
  • 69 Paulussen M, Ahrens S, Dunst J et al. Localized Ewing tumor of bone: Final results of the cooperative Ewing’s Sarcoma Study CESS 86. J Clin Oncol 2001; 19: 1818-1829
  • 70 Paulussen M, Ahrens S, Lehnert M et al. Second malignancies after ewing tumor treatment in 690 patients from a cooperative German/Austrian/Dutch study. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 2001; 12: 1619-1630
  • 71 Paulussen M, Craft AW, Lewis I et al. Results of the EICESS-92 study: Two randomized trials of Ewing’s sarcoma treatment – Cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. Journal of Clinical Oncology 2008; 26: 4385-4393
  • 72 Paulussen M, Craft AW, Lewis I et al. Results of the EICESS-92 study: Two randomized trials of Ewing’s sarcoma treatment – Cyclophosphamide compared with ifosfamide in standard-risk patients and assessment of benefit of etoposide added to standard treatment in high-risk patients. J Clin Oncol 2008; 26: 4385-4393
  • 73 Porter DL, Levine BL, Kalos M et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725-733
  • 74 Pule MA, Savoldo B, Myers GD et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med 2008; 14: 1264-1270
  • 75 Rasper M, Jabar S, Ranft A et al. The value of high-dose chemotherapy in patients with first relapsed Ewing sarcoma. Pediatr Blood Cancer 2014; 61: 1382-1386
  • 76 Riggi N, Cironi L, Provero P et al. Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 2005; 65: 11459-11468
  • 77 Rodl RW, Hoffmann C, Gosheger G et al. Ewing’s sarcoma of the pelvis: combined surgery and radiotherapy treatment. Journal of surgical oncology 2003; 83: 154-160
  • 78 Rosen G, Caparros B, Nirenberg A et al. Ewings-Sarcoma – Ten-Year Experience with Adjuvant Chemotherapy. Cancer 1981; 47: 2204-2213
  • 79 Rosen G, Juergens H, Caparros B et al. Combination chemotherapy (T-6) in the multidisciplinary treatment of Ewing’s sarcoma. National Cancer Institute monograph 1981 DOI: http://www.ncbi.nlm.nih.gov/pubmed/7300895 289-299
  • 80 Rossig C, Juergens H, Berdel WE. New Targets and Targeted Drugs for the Treatment of Cancer: An Outlook to Pediatric Oncology. Ped Hem Onc 2011; 28: 539-555
  • 81 Rossig C, Juergens H, Schrappe M et al. Effective childhood cancer treatment: the impact of large scale clinical trials in Germany and Austria. Pediatr Blood Cancer 2013; 60: 1574-1581
  • 82 Schuck A, Ahrens S, Paulussen M et al. Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS 81, CESS 86, and EICESS 92 trials. International journal of radiation oncology, biology, physics 2003; 55: 168-177
  • 83 Schuck A, Rube C, Konemann S et al. Postoperative radiotherapy in the treatment of Ewing tumors: influence of the interval between surgery and radiotherapy. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft [et al.] 2002; 178: 25-31
  • 84 Scotlandi K, Benini S, Sarti M et al. Insulin-like growth factor I receptor-mediated circuit in Ewing’s sarcoma peripheral neuroectodermal tumor: A possible therapeutic target. Cancer Research 1996; 56: 4570-4574
  • 85 Seddon BM, Cassoni AM, Galloway MJ et al. Fatal radiation myelopathy after high-dose busulfan and melphalan chemotherapy and radiotherapy for Ewing’s sarcoma: a review of the literature and implications for practice. Clin Oncol 2005; 17: 385-390
  • 86 Sluga M, Windhager R, Lang S et al. The role of surgery and resection margins in the treatment of Ewing’s sarcoma. Clinical orthopaedics and related research 2001; DOI: http://www.ncbi.nlm.nih.gov/pubmed/11716413 394-399
  • 87 Staege MS, Hutter C, Neumann I et al. DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 2004; 64: 8213-8221
  • 88 Stahl M, Ranft A, Paulussen M et al. Risk of recurrence and survival after relapse in patients with Ewing sarcoma. PediatrBlood Cancer 2011; 57: 549-553
  • 89 Stohr W, Paulides M, Bielack S et al. Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer 2007; 48: 447-452
  • 90 Tanaka M, Yamazaki Y, Kanno Y et al. Ewing’s sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors. The Journal of clinical investigation 2014; 124: 3061-3074
  • 91 Tap WD, Demetri G, Barnette P et al. Phase II study of ganitumab, a fully human anti-type-1 insulin-like growth factor receptor antibody, in patients with metastatic Ewing family tumors or desmoplastic small round cell tumors. J Clin Oncol 2012; 30: 1849-1856
  • 92 Thiel U, Wawer A, Wolf P et al. No improvement of survival with reduced- versus high-intensity conditioning for allogeneic stem cell transplants in Ewing tumor patients. Annals of oncology: official journal of the European Society for Medical Oncology/ESMO 2011; 22: 1614-1621
  • 93 Tirode F, Laud-Duval K, Prieur A et al. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 2007; 11: 421-429
  • 94 Tirode F, Surdez D, Ma X et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer discovery 2014; DOI: 10.1158/2159-8290.CD-14-0622.
  • 95 Toretsky JA, Kalebic T, Blakesley V et al. The insulin-like growth factor-I receptor is required for EWS/FLI-1 transformation of fibroblasts. Journal of Biological Chemistry 1997; 272: 30822-30827
  • 96 van Valen F, Winkelmann W, Jurgens H et al. Type I and type II insulin-like growth factor receptors and their function in human Ewing’s sarcoma cells. Journal of cancer research and clinical oncology 1992; 118: 269-275
  • 97 Wagner LM, McAllister N, Goldsby RE et al. Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr Blood Cancer 2007; 48: 132-139
  • 98 Winkelmann WW. Rotationplasty. The Orthopedic clinics of North America 1996; 27: 503-523
  • 99 Womer RB, West DC, Krailo MD et al. Randomized controlled trial of interval-compressed chemotherapy for the treatment of localized Ewing sarcoma: a report from the Children’s Oncology Group. J Clin Oncol 2012; 30: 4148-4154
  • 100 Zhou Z, Guan H, Duan X et al. Zoledronic acid inhibits primary bone tumor growth in Ewing sarcoma. Cancer 2005; 104: 1713-1720
  • 101 Zoubek A, Dockhorn-Dworniczak B, Delattre O et al. Does expression of different EWS chimeric transcripts define clinically distinct risk groups of Ewing tumor patients?. J Clin Oncol 1996; 14: 1245-1251