Intensivmedizin up2date 2015; 11(01): 77-92
DOI: 10.1055/s-0034-1390907
Neuro-Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Chirurgische und konservative Therapie traumatischer Rückenmarkverletzungen

Klaus Zweckberger
,
Alexander Younsi
,
Andreas W. Unterberg
Further Information

Publication History

Publication Date:
08 January 2015 (online)

Kernaussagen
  • Die traumatische Rückenmarkschädigung führt zu einer inkompletten oder kompletten Para- oder Tetraparese mit einer erheblichen Einschränkung der Lebensqualität und hohen sozioökonomischen Kosten.

  • Hauptrisikofaktoren für das Überleben sind das Alter, die Höhe der Rückenmarkschädigung, das Ausmaß neurologischer Defizite und pulmonale Infektionen.

  • Zur Erstversorgung gehören die Sicherung der Vitalfunktionen am Unfallort (ggf. Intubation) und eine Immobilisierung (Stiff-neck, Vakuummatratze).

  • Bei einer Kompression des Rückenmarks oder einer instabilen Fraktur ist eine Entlastung des Rückenmarks mit zusätzlicher Stabilisierung innerhalb von 24 Stunden erforderlich.

  • Besonders respiratorische und kardiovaskuläre Komplikationen, Thrombembolien und ein gestörter Metabolismus sowie Infektionen sind eine Herausforderung in der weiteren intensivmedizinischen Behandlung.

  • Besonders bei jungen Patienten mit inkompletter Querschnittslähmung kann die Rehabilitationsbehandlung funktionelle Erfolge erreichen.

Die Literatur zu diesem Beitrag finden Sie unter http://dx.doi.org/10.1055/s-0034-1390907.

 
  • Literatur

  • 1 Dryden DM, Saunders LD, Rowe BH et al. The epidemiology of traumatic spinal cord injury in Alberta, Canada. Can J Neurol Sci 2003; 30: 113-121
  • 2 Rowland JK, Hawryluk GW, Kwon B et al. Current status of acute spinal cord injury, pathophysiology and emerging therapies: promise on the horizon. JNS 2008; 25: E2
  • 3 National center for injury prevention and control. Injury Fact Book. Atlanta, GA: Centers for Disease Control and Prevention; 2001
  • 4 Ackery A, Tator C, Krassioukov A. A global perspective on spinal cord injury epidemiology. J Neurotrauma 2004; 21: 1355-1370
  • 5 Pirouzmand F. Epidemiological trends of spine and spinal cord injuries in the largest Canadian adult trauma center from 1986 to 2006. J Neurosurg Spine 2010; 12: 131-140
  • 6 O’Connor RJ, Murray PC. Review of spinal cord injuries in Ireland. Spinal Cord 2006; 44: 445-448
  • 7 Burke DA, Linden RD, Zhang YP et al. Incidence rates and populations at risk for spinal cord injury: a regional study. Spinal Cord 2001; 39: 274-278
  • 8 Warren S, Moore M, Johnson M. Traumatic head and spinal cord injuries in Alaska (1991–1993). Alaska Med 1995; 37: 11-19
  • 9 Asbeck van F, Post M, Pangalila R. An epidemiological description of spinal cord injuries in the Netherlands in 1994. Spinal Cord 2000; 38: 420-424
  • 10 Martins F, Freita F, Martins L et al. Spinal cord injuries epidemiology in Portugal’s central region. Spinal Cord 1998; 36: 574-578
  • 11 Otom A, Doughan A, Kawar J et al. Traumatic spinal cord injuries in Jordan – an epidemiological study. Spinal Cord 1997; 35: 253-255
  • 12 Shingu H, Ohama M, Ikata T et al. A nationwide epidemiological survey of spinal cord injuries in Japan from January 1990 to December 1992. Paraplegia 1995; 33: 183-188
  • 13 Pickett GE, Campos-Benitez M, Keller JL et al. Epidemiology of traumatic spinal cord injury in Canada. Spine (Phila Pa 1976) 2006; 31: 799-805
  • 14 Spinal cord injury facts and figures at a glance. J Spinal Cord Med 2008; 31: 357-358
  • 15 Krueger H, Noonan VK, Trenaman LM et al. The economic burden of traumatic spinal cord injury in Canada. Chronic Dis Inj Can 2013; 33: 113-122
  • 16 Daneshvar P, Roffey DM, Brikeet YA et al. Spinal cord injuries related to cervical spine fractures in elderly patients: factors affecting mortality. Spine J 2013; 13: 862-866
  • 17 Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey?. Spinal Cord 2006; 44: 523-529
  • 18 Chiu WT, Lin HC, Lam C et al. Review paper: epidemiology of traumatic spinal cord injury: comparisons between developed and developing countries. Asia Pac J Public Health 2010; 22: 9-18
  • 19 Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 2001; 26 (Suppl. 24) 2-12
  • 20 Jackson AB, Dijkers M, Devivo MJ et al. A demographic profile of new traumatic spinal cord injuries: change and stability over 30 years. Arch Phys Med Rehabil 2004; 85: 1740-1748
  • 21 Chen D, Apple DF Jr, Hudson LM et al. Medical complications during acute rehabilitation following spinal cord injury – current experience of the Model Systems. Arch Phys Med Rehabil 1999; 80: 1397-1401
  • 22 Claxton A, Wong DT, Chung F et al. Factors predictive of hospital mortality and mechanical ventilation in cervical spinal cord injury. Can J Anaesth 1998; 45: 144-149
  • 23 Dubendorf P. Spinal cord injury pathophysiology. Crit Care Nurs Q 1999; 22: 31-35
  • 24 Tator CH, Rowed DW. Current concepts in the immediate management of acute spinal cord injuries. Can Med Assoc J 1979; 121: 1453-1464
  • 25 Kakulas BA. Neuropathology: The foundation for new treatments in spinal cord injury. Spinal Cord 2004; 45: 549-563
  • 26 Tator CH, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury. J Neurosurg 1997; 86: 483-492
  • 27 Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 2007; 209: 378-388
  • 28 Pineau I, Lacroix S. Pro-inflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of cell types involved. J Comp Neurol 2007; 500: 267-285
  • 29 Wrathall JR, Teng YD, Choiniere D. Amelioration of functional deficits from spinal cord trauma with systemically administered NBQX, an antagonist of non-N-methyl-D-aspartate receptors. Exp Neurol 1996; 137: 119-126
  • 30 Kwon BK, Tetzlaff W, Grauer JN et al. Pathophysiology and pharmacological treatment of acute spinal cord injury. Spine J 2004; 4: 451-464
  • 31 Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis of vascular mechanisms. J Neurosurg 1991; 75: 15-26
  • 32 Schanne FA, Kane AB, Young EE et al. Calcium dependence of toxic cell death: a final common pathway. Science 1979; 206: 700-702
  • 33 Park E, Velumian AA, Fehlings MG. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma 2004; 21: 754-774
  • 34 Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damage after spinal cord injury. J Neurochem 2007; 100: 639-649
  • 35 Schnell L, Fearn S, Schwab ME et al. Cytokine-induced acute inflammation in the brain and spinal cord. J Neuropathol Exp Neurol 1999; 58: 245-254
  • 36 Casha S, Yu WR, Fehlings MG. FAS deficiency reduces apoptosis, spares axons and improves function after spinal cord injury. Exp Neurol 2005; 196: 390-400
  • 37 Casha S, Yu WR, Fehlings MG. Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in rats. Neuroscience 2001; 103: 203-218
  • 38 Herrmann JE, Imura T, Song B et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 2008; 28: 7231-7234
  • 39 Hill CE, Beattie MS, Bresnahan JC. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in rats. Exp Neurol 2001; 171: 153-169
  • 40 Beattie MS, Hermann GE, Rogers CE et al. Cell death in models of spinal cord injury. Prog Brain Res 2002; 137: 37-47
  • 41 Colemann MP, Perry VH. Axon pathology in neuronal diseases: a neglected therapeutic target. Trends Neurosci 2002; 25: 532-537
  • 42 Ehlers MD. Deconstructing the axons: Wallerian degeneration and the ubiquitin-proteasome system. Trends Neurosci 2004; 27: 3-6
  • 43 Stoodley MA. Pathophysiology of syringomyelia. J Neurosurg 2000; 92: 1069-1073
  • 44 Crosby ET. Airway management in adults after cervical spine trauma. Anesthesiology 2006; 104: 1293-1318
  • 45 Guly HR, Bouamra O, Lecky FE. The incidence of neurogenic shock of patients with isolated cervical spinal injury in the emergency department. Resuscitation 2008; 76: 57-62
  • 46 Furlan JC, Fehling MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus 2008; 25: E13
  • 47 Franga DL, Hawkins ML, Medeiros RS et al. Recurrent asystole resulting from high level spinal cord injuries. Am Surg 2006; 72: 525-529
  • 48 AANS. AANS Guidelines for the management of acute cervical spinal cord injuries. Radiographic assessment of the cervical spine in symptomatic trauma patients. Neurosurgery 2002; 50 (Suppl.) 36-43
  • 49 Belanger E, Levi AD. The acute and chronic management of spinal cord injury. J Am Coll Surg 2000; 190: 603-618
  • 50 Brodkey JS, Richards DE, Blasingame JP et al. Reversal spinal cord trauma in cats. Additive effects of direct pressure and ischemia. J Neurosurg 1972; 37: 591-593
  • 51 Carlson GD, Minato Y, Okada A et al. Early time-dependent decompression for spinal cord injury: Vascular mechanisms of recovery. J Neurotrauma 1997; 14: 951-962
  • 52 Delamater RB, Sherman J, Carr JB. Pathophysiology of spinal cord injury. Recovery after immediate and delayed decompression. J Bone Joint Surg Am 1995; 77: 1042-1049
  • 53 Dimar JR, Glassmann SD, Raque GH et al. The influence of spinal canal narrowing and timing on decompression on neurological recovery after spinal cord contusion in a rat model. Spine 1999; 24: 1623-1633
  • 54 Dolan EJ, Tator CH, Endrenyi L. The value of decompression for acute experimental spinal cord compression injury. J Neurosurg 1980; 53: 749-755
  • 55 Guha A, Tator CH, Endrenyi L et al. Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury. Paraplegia 1987; 25: 324-339
  • 56 Kobrine AI, Evans DE, Rizzoli HV. Experimental acute balloon compression of the spinal cord. Factors affecting disappearance and return of the spinal evoked response. J Neurosurg 1979; 51: 841-845
  • 57 Nystrom B, Berglund JE. Spinal cord restitution following compression injuries in rats. Acta Neurol Scand 1988; 78: 467-472
  • 58 Carlson GD, Gorden CD, Oliff HS et al. Sustained spinal cord compression: Part I: Time-dependent effect of long-term pathophysiology. J Bone Joint Surg Am 2003; 85: 86-94
  • 59 Furlan JC, Noonan V, Cadotte DW et al. Timing of decompressive surgery of spinal cord after traumatic spinal cord injury: an evidenced-based examination of pre-clinical and clinical studies. J Neurotrauma 2011; 28: 1371-1399
  • 60 Tator CH, Fehlings MG, Thorpe K et al. Current use and timing of spinal surgery for management of acute spinal cord injury in North America: results of a retrospective multi-center study. J Neurosurg 1999; 91: 150-154
  • 61 Botel U, Glaser E, Nieddeggen A. The surgical treatment of acute spinal paralyzed patients. Spinal Cord 1997; 35: 420-428
  • 62 Levi I, Wolf A, Rigamonti D et al. Anterior decompression in cervical spine trauma: does the timing of surgery affect the outcome?. Neurosurgery 1991; 29: 216-222
  • 63 Campagnolo D, Esquieres RE, Kopacz KJ et al. Effect of timing of stabilization on length of stay and medical complications following spinal cord injury. J Spinal Cord Med 1997; 20: 331-334
  • 64 McLain RF, Benson DR. Urgent surgical stabilization of spinal fractures in polytrauma patients. Spine 1999; 24: 1646-1654
  • 65 Duh MS, Shepard MJ, Wilberger JE et al. The effectiveness of surgery on the treatment of acute spinal cord injury and its relation to pharmacologic treatment. Neurosurgery 1994; 35: 240-248
  • 66 Pollard ME, Apple DF. Factors associated with improved neurological outcomes in patients with incomplete tetraplegia. Spine 2003; 28: 33-39
  • 67 Vaccaro AR, Daugherty RJ, Sheehan TP et al. Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine 1997; 22: 2609-2613
  • 68 Clohisy JC, Akbarnia BA, Bucholz RD et al. Neurological recovery associated with anterior decompression of spine fractures at the thoracolumbar junction (T12-L1). Spine 1992; 17: 325-330
  • 69 Mirza SK, Krengel WF, Chapman JR et al. Early versus delayed decompression surgery for acute cervical spinal cord injury. Clin Orthop Relat Res 1999; 359: 104-114
  • 70 Fehlings MG, Vaccaro A, Wilson JF et al. Early versus delayed decompression for traumatic cervical spinal cord injury: Results for surgical timing in acute spinal cord injury study (STASCIS). PlosOne 2012; 7: e32037
  • 71 van Middendorp JJ, Hosman AJF, Doi SAR. The effects of timing of spinal surgery after traumatic spinal cord injury: a systemic review and meta-analysis. J Neurotrauma 2013; 30: 1781-1794
  • 72 Vaccaro AR, Hurlbert J, Patel AA et al. The subaxial cervical spine cord injury classificatin system: a novel approach to recognize the morphology, neurology, and integrity of the disco-ligamentous complex. Spine 2007; 32: 2365-2374
  • 73 Vaccaro AR, Lehman RA, Hurlbert RJ et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 2005; 30: 2325-2333
  • 74 Brodke DS, Anderson PA, Newell DW et al. Comparison of anterior or posterior approaches in cervical spinal cord injuries. J Spine Disord Tech 2003; 16: 229-235
  • 75 Carreon LY, Dimar JR. Early versus late stabilization of spine injuries. Spine 2011; 36: 727-733
  • 76 Hall ED, Braughler JM. Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Exp Neurol 1981; 73: 321-324
  • 77 Hall ED, Braughler JM. Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation and Na+ + K+ ATPase activity. Dose response analysis during 1st hour after contusion injury in the cat. J Neurosurg 1982; 57: 247-253
  • 78 Bracken MB, Collins WF, Freeman DF et al. Efficiency of methylprednisolone in acute spinal cord injury. JAMA 1984; 251: 45-52
  • 79 Bracken MB, Shepard MJ, Collins Jr WF et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second national acute spinal cord injury study. J Neurosurg 1992; 76: 23-31
  • 80 Bracken MB, Shepard MJ, Holford TR et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of spinal cord injury. Results of the third national spinal cord injury randomized controlled trial. National acute spinal cord injury study. JAMA 1997; 277: 1597-1604
  • 81 AANS/CNS. Pharmacological therapy after acute cervical spinal cord injury. Neurosurgery 2002; 50: 63-72
  • 82 Rodden FA, Wiegandt H, Bauer BL. Gangliosides: The relevance of current research to neurosurgery. J Neurosurg 1991; 74: 606-619
  • 83 Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal cord injury – a randomized placebo-controlled trial with GM-1 Ganglioside. N Engl J Med 1991; 324: 1829-1838
  • 84 Geisler FH, Coleman WP, Grieco G et al. The Sygen multicenter acute spinal cord injury study. Spine 2001; 26: 87-98
  • 85 Teng YD, Choi H, Onario RC et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci USA 2004; 101: 3071-3076
  • 86 Sterling DP, Khodarahmi K, Liu J et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci 2004; 24: 2182-2190
  • 87 Casha S, Zygun D, McGowan MD et al. Results of a phase II placebo-controlled randomized trial of minocycline in acute spinal cord injury. Brain 2012; 135: 1224-1236
  • 88 Dubreuil CI, Winton MJ, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 2003; 162: 233-243
  • 89 Fehlings MG, Theodore N, Harrop J et al. A phase I/IIa clinical trial of a recombinant Rho protein antagonist in acute spinal cord injury. J Neurotrauma 2011; 28: 787-796
  • 90 Richardson PM, McGuinness UM, Aguayo AJ. Axons from CNS neurons regenerate into PNS grafts. Nature 1980; 284: 264-265
  • 91 Chen MS, Huber AB, van der Haar ME et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000; 403: 434-439
  • 92 Li S, Schrittmacher SM. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci 2003; 23: 4219-4227
  • 93 Hansebout RR, Blight AR, Fawcett S et al. 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J Neurotrauma 1993; 10: 1-18
  • 94 Cardenas DD, Ditunno JF, Graziani V et al. Two phase 3, multicenter, randomized placebo controlled clinical trials of fampridine-SR for treatment of spasticity in chronic spinal cord injury. Spinal Cord 2014; 52: 70-76
  • 95 Jia X, Kowalski RG, Sciubba DM et al. Critical care of traumatic spinal cord injury. J Intensive Care Med 2013; 28: 12-23
  • 96 Onders RP, Khansarinia S, Weiser T et al. Multicenter analysis of diaphragm pacing in tetraplegics with cardiac pacemakers: positive implications for ventilator weaning in intensive care units. Surgery 2010; 148: 893-897
  • 97 Fishburn MJ, Marino RJ, Ditunno JF Jr. Atelectasis and pneumonia in acute spinal cord injury. Arch Phys Med Rehabil 1990; 71: 197-200
  • 98 Jaeger JM, Littlewood KA, Durbin Jr CG. The role of tracheostomy in weaning from mechanical ventilation. Respir Care 2002; 47: 469-482
  • 99 Romero J, Vari A, Gambarrutta C et al. Tracheostomy timing in traumatic spinal cord injury. Eur Spine J 2009; 18: 1452-1457
  • 100 Dumont RJ, Okonkwo DO, Verma S et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001; 24: 254-264
  • 101 Ploumis A, Yadlapalli N, Fehlings MG et al. A systemic review of evidence supporting a role of vasopressor support in acute spinal cord injury. Spinal Cord 2010; 48: 356-362
  • 102 Ellender TJ, Skinner JC. The use of vasopressors and inotropes in the emergency medical treatment of shock. Emerg Med Clin North Am 2008; 26: 759-786
  • 103 Muzevich KM, Voils SA. Role of vasopressor administration in patients with acute neurologic injury. Neurocrit Care 2009; 11: 112-119
  • 104 Marik PE, Mohedin M. The contrasting effects of dopamine and norepinephrine on systemic and splanchic oxygen utilization in hyperdynamic sepsis. JAMA 1994; 272: 1354-1357
  • 105 Guerin JP, Levraut J, Samat-Long C et al. Effects of dopamine and norepinephrine on systemic and hepatosplanchic hemodynamics, oxygen exchange, and energy balance in vasoplegic septic patients. Shock 2005; 23: 18-24
  • 106 Wuermser LA, Ho CH, Chiodo AE et al. Spinal cord injury medicine. 2. Acute care management of traumatic and non-traumatic injury. Arch Phys Med Rehabil 2007; 88: 55-61
  • 107 Winemiller MH, Stolp-Smith KA, Silverstein MD et al. Prevention of venous thromboembolism in patients with spinal cord injury: effects of sequential pneumatic compression and heparin. J Spinal Cord Med 1999; 22: 182-191
  • 108 Rosenthal D, Wellons ED, Levitt AB et al. Role of prophylactic temporary inferior vena cava filters placed at the ICU bedside under intravascular ultrasound guidance in patients with multiple trauma. J Vasc Surg 2004; 40: 958-963
  • 109 Gorman PH, Qadri SFA, Rao-Patel A. Prophylactic inferior vena cava (IVC) filter placement may increase the relative risk of deep venous thrombosis after acute spinal cord injury. J Trauma Injury Infect Crit Care 2009; 66: 707-712
  • 110 Maxwell RA, Chavarria-Aguilar M, Cockerham WT et al. Routine prophylactic vena cave filtration is not indicated after acute spinal cord injury. J Trauma Injury Infect Crit Care 2002; 52: 902-906
  • 111 Buchholz AC, Pencharz PB. Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care 2004; 7: 635-639
  • 112 Krogh K, Mosdal C, Laurberg S et al. Gastrointestinal and segmental colonic transit time in patients with acute and chronic spinal cord lesions. Spinal Cord 2000; 38: 615-621
  • 113 Dvorak MF, Noonan VK, Belanger L et al. Early versus late enteral feeding in patients with acute cervical spinal cord injury: a pilot study. Spine 2004; 29: 175-180
  • 114 Gramlich L, Kichian K, Pinilla J et al. Does enteral nutrition compared parenteral nutrition result in better outcome in critically ill adult patients? A systematic review of the literature. Nutrition 2004; 20: 843-848
  • 115 Reymond J, Harmer AR, Temesi J et al. Glucose tolerance and physical activity level in people with spinal cord injury. Spinal Cord 2010; 48: 591-596
  • 116 Finfer S, Chittock DR, Su SY et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med 2009; 360: 1283-1297
  • 117 Stevens RD, Bhardwaj A, Kirsch JR et al. Critical care and perioperative management in traumatic spinal cord injury. J Neurosurg Anesthesiol 2003; 15: 215-229
  • 118 Weld KJ, Dmochowski RR. Effect of bladder management on urological complications in spinal cord injured patients. J Urol 2000; 163: 768-772
  • 119 Ku JH, Jung TY, Lee JK et al. Influence of bladder management on epididymo-orchitis in patients with spinal cord injury: clean intermittent catheterization is a risk factor for epididymo-orchitis. Spinal Cord 2006; 44: 165-169
  • 120 Morton SC, Shekelle PG, Adams JL et al. Antimicrobial prophylaxis for urinary tract infection in persons with spinal cord dysfunction. Arch Phys Med Rehabil 2002; 83: 129-138
  • 121 Sievert KD, Amend B, Gakis G et al. Early sacral neuromodulation prevents urinary incontinence after complete spinal cord injury. Ann Neurol 2010; 67: 74-84
  • 122 Winslow C, Bode RK, Felton D et al. Impact of respiratory complications on length of stay and hospital costs in acute cervical spine injury. Chest 2002; 121: 1548-1554
  • 123 Cotton BA, Pryor JP, Chinwalla I et al. Respiratory complications and mortality risk associated with thoracic spine injury. J Trauma 2005; 59: 1400-1409
  • 124 Berney S, Bragge P, Granger C et al. The acute respiratory management of cervical spinal cord injury in the first 6 weeks after injury: a systemic review. Spinal Cord 2011; 49: 17-29
  • 125 Berlly M, Shem K. Respiratory management during the first five days after spinal cord injury. J Spinal Cord Med 2007; 30: 309-318
  • 126 Murphy M. Traumatic spinal cord injury: An acute care rehabilitation perspective. Crit Care Nurs Q 1999; 22: 51-59
  • 127 Truong AD, Fan E, Brower RG et al. Bench-to-bedside review: mobilizing patients in the intensive care unit – from pathophysiology to clinical trials. Crit Care 2009; 13: 216
  • 128 Sumida M, Fujimoto M, Tokuhiro A et al. Early rehabilitation effect for traumatic spinal cord injury. Arch Phys Med Rehabil 2001; 82: 391-395
  • 129 Hicks AL, Adams MM, Martin GinisK et al. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: effects on functional walking ability and measures of subjective well-being. Spinal Cord 2005; 43: 291-298
  • 130 Duysens J, Van de Crommert HW. Neural control of locomotion: the central pattern generator from cats to humans. Gait Posture 1998; 7: 131-141
  • 131 Van de Crommert HW, Mulder T, Duysens J. Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture 1998; 7: 251-263
  • 132 Selden NR, Quint DJ, Patel N et al. Emergency magnet resonance imaging of cervical spinal cord injuries: clinical correlation and prognosis. Neurosurgery 1999; 44: 785-792