Ultraschall Med 2015; 36(01): 54-58
DOI: 10.1055/s-0034-1385012
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Normal Values for Transbulbar Sonography and Magnetic Resonance Imaging of the Optic Nerve Sheath Diameter (ONSD) in Children and Adolescents

Normwerte für die transbulbäre Sonografie und Magnetresonanztomografie des Optikusnervenscheidendurchmessers (ONSD) bei Kindern und Jugendlichen
M. Steinborn
1   Department of Diagnostic and Interventional Radiology and Pediatric Radiology, Städtisches Klinikum München Schwabing, Munich
,
M. Friedmann
1   Department of Diagnostic and Interventional Radiology and Pediatric Radiology, Städtisches Klinikum München Schwabing, Munich
,
H. Hahn
2   Department of Pediatrics, Technische Universität München (TUM), Munich
,
A. Hapfelmeier
3   Institute for Medical Statistics and Epidemiology, Technische Universität München (TUM), Munich
,
E. Macdonald
1   Department of Diagnostic and Interventional Radiology and Pediatric Radiology, Städtisches Klinikum München Schwabing, Munich
,
K. Warncke
2   Department of Pediatrics, Technische Universität München (TUM), Munich
,
A. Saleh
1   Department of Diagnostic and Interventional Radiology and Pediatric Radiology, Städtisches Klinikum München Schwabing, Munich
› Author Affiliations
Further Information

Publication History

25 February 2014

11 July 2014

Publication Date:
20 August 2014 (online)

Abstract

Purpose: To establish normal values of the optic nerve sheath diameter (ONSD) in children and adolescents for transbulbar sonography and magnetic resonance imaging.

Materials and Methods: In 99 children and adolescents (age: 5.6 – 18.6 years, mean: 12 years) without neurologic or ophthalmologic disease, measurements of the ONSD with transbulbar sonography were performed. For comparison 59 children and adolescents (age: 5.1 – 17.4 years, mean 12.3 years) with a normal MR examination of the brain had measurements of the ONSD on a T2-weighted thin section sequence of the orbit. Besides establishing modality-related normal values, age dependency, accuracy and reproducibility of measurements were assessed.

Results: Overall the mean ONSD was 5.75 ± 0.52 mm for transbulbar sonography and 5.69 ± 0.31 mm for MRI. There was no statistical significance between the 95 % percentiles and age for both transbulbar sonography (p = 0.332) and MRI (p = 0.336). As a parameter for the reproducibility of measurements, the repeatability coefficient (RC) was between 0.34 mm and 0.46 mm. The concordance correlation coefficient (CCC) values revealed a high agreement between readers both for transbulbar sonography (0.868) and MRI (0.796).

Conclusion: Normal values for ONSD in children and adolescents found in this study are significantly higher than assumed. The values found for transbulbar sonography are confirmed by comparable results for MR measurements. A precise sonographic measurement technique and the consideration of normal values found hereby are essential for correct interpretation of ONSD measurements in children and adolescents.

Zusammenfassung

Ziel: Bestimmung von Normwerten des Optikusnervenscheidendurchmessers (ONSD) bei Kindern und Jugendlichen für transbulbäre Sonografie und Magnetresonanztomografie.

Material und Methoden: Bei 99 Kindern und Jugendlichen (Alter: 5,6 – 18,6 Jahre, MW: 12 Jahre) ohne neurologische oder ophthalmologische Grunderkrankung wurde der ONSD mittels transbulbärer Sonografie bestimmt. Als Vergleichsgruppe wurde bei 59 Kindern und Jugendlichen (Alter: 5,1 – 17,4 Jahre, MW: 12,3 Jahre) mit einer unauffälligen MRT-Untersuchung des Schädels der ONSD mittels einer T2-gewichteten Dünnschichtuntersuchung der Orbita ermittelt. Neben der methodenbezogenen Normwertbestimmung wurden Altersabhängigkeit der Messwerte, Messgenauigkeit und Reproduzierbarkeit der Messungen ermittelt.

Ergebnisse: Der Mittelwert des ONSD im Gesamtkollektiv betrug für die transbulbäre Sonografie 5,75 ± 0,52 mm und für die MRT 5,69 ± 0,31 mm. Die Überprüfung der Altersabhängigkeit der 95 % Perzentile war weder für die Sonografie (p = 0,332) noch die MR-Tomografie (p = 0,336) statistisch signifikant. Der repeatability coefficient (RC-Koeffizient) als Maß für die Reproduzierbarkeit der Messungen ergab Werte zwischen 0,34 mm und 0,46 mm. Die Werte für den concordance correlation coefficient (CCC) ergaben eine hohe Übereinstimmung der Messungen zwischen den Betrachtern sowohl für die transbulbäre Sonografie (0,868) als auch die MRT (0,796).

Schlussfolgerung: Die in dieser Studie ermittelten Normwerte des ONSD bei Kindern und Jugendlichen liegen deutlich höher als bisher angenommen. Die Messwerte für die transbulbäre Sonografie werden durch vergleichbare MRT-Werte bestätigt. Eine exakte sonografische Messtechnik und die Berücksichtigung der hierbei ermittelten Normwerte sind für die Interpretation von ONSD-Messungen bei Kindern und Jugendlichen unabdingbar.

 
  • References

  • 1 Schwalbe G. Untersuchungen über die Lymphbahnen des Auges und ihre Begrenzungen. Arch Mikr Anat 1870; 6: 1-61
  • 2 Liu D, Kahn M. Measurement and relationship of subarachnoid pressure of the optic nerve to intracranial pressure in fresh cadavers. Am J Ophthalmol 1993; 116: 548-556
  • 3 Skalka HW. Neural and dural optic nerve measurements with A-scan ultrasonography. South Med J 1978; 71: 399-400
  • 4 Hansen HC, Helmke K. The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg Radiol Anat 1996; 18: 323-328
  • 5 Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension II Patient study. Pediatr Radiol 1996; 26: 706-710
  • 6 Ballantyne SA, O`Neill G, Hamilton R et al. Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. European Journal of Ultrasound 2002; 15: 145-149
  • 7 Geeraerts T, Launey Y, Martin L et al. Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med 2007; 33: 1704-1711
  • 8 Bäuerle J, Lochner P, Kaps M et al. Intra- and Interobserver Reliability of Sonographic Assessment of the Optic Nerve Sheath Diameter in Healthy Adults. J Neuroimaging 2012; 22: 42-45
  • 9 Seitz J, Held P, Strotzer M et al. Magnetic resonance imaging in patients diagnosed with papilledema: a comparison of 6 different high-resolution T1- and T2(*)-weighted 3-dimensional and 2-dimensional sequences. J Neuroimaging 2002; 12: 164-171
  • 10 Weigel M, Lagreze WA, Lazzaro A et al. Fast and Quantitative High-Resolution Magnetic Resonance Imaging of the Optic Nerve at 3.0 Tesla. Invest Radiol 2006; 41: 83-86
  • 11 Lagreze WA, Lazzaro A, Weigel M et al. Morphometry of the Retrobulbar Human Optic Nerve: Comparison between Conventional Sonography and Ultrafast Magnetic Resonance Sequences. Invest Ophthalmol Vis Sci 2007; 48: 1913-1917
  • 12 Rohr A, Riedel C, Reimann G et al. Pseudotumor cerebri: Quantitative In-Vivo Measurements of Markers of Intracranial Hypertension. Fortschr Röntgenstr 2008; 180: 884-890
  • 13 Dubourg J, Javouhey E, Geeraerts T et al. Ultrasonography of the optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 2011; 37: 1059-1068
  • 14 Helmke K, Hansen HC. Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion under intracranial hypertension I Experimental study. Pediatr Radiol 1996; 26: 701-705
  • 15 Ertl M, Barinka F, Torka E et al. Ocular Color-Coded Sonography – A Promising Tool for Neurologists and Intensive Care Physicians. Ultraschall in Med 2014; (epub ahead of print)
  • 16 Steinborn M, Fiegler J, Kraus V et al. High Resolution Ultrasound and Magnetic Resonance Imaging of the Optic Nerve and the Optic Nerve Sheath: Anatomic Correlation and Clinical Importance. Ultraschall in Med 2011; 32: 608-613
  • 17 Steinborn M, Fiegler J, Rüdisser K et al. Measurement of the Optic Nerve Sheath Diameter in Children: Comparison between Transbulbar Sonography and Magnetic Resonance Imaging. Ultraschall in Med 2011; (epub ahead of print)
  • 18 Brzezinska R, Schumacher R. Diagnostik eines erhöhten Hirndrucks bei shuntversorgten Kindern unter besonderer Berücksichtigung der transbulbären Sonographie des Nervus opticus. Ultraschall in Med 2002; 23: 325-332
  • 19 Ballantyne J, Hollman AS, Hamilton R et al. Transorbital Optic Nerve Sheath Ultrasonography in Normal Children. Clinical Radiology 1999; 53: 740-742
  • 20 Rohr A, Jensen U, Riedel C et al. MR Imaging of the Optic Nerve Sheath in Patients with Craniospinal Hypotension. AJNR 2010; 31: 1752-1757
  • 21 Watanabe A, Kinouchi H, Horikoshi T. Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg 2008; 109: 255-258
  • 22 Geeraerts T, Newcombe VFJ, Coles JP et al. Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Critical Care 2008; 12: R114
  • 23 Scanlan KA. Sonographic Artifacts and Their Origins. Am J Roentgenol 1991; 156: 1267-1272
  • 24 Killer HE, Laeng HR, Flammer J et al. Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve: anatomy and clinical considerations. Br J Ophthalmol 2003; 87: 777-781
  • 25 Magoon EH, Robb RM. Development of myelin in human optic nerve and tract. A light- and electron microscopic study. Arch Ophthalmol 1981; 99: 655-659