Planta Med 2014; 80(13): 1124-1130
DOI: 10.1055/s-0034-1382961
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Amide Alkaloids from Scopolia tangutica

Zhen Long*
1   Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Peopleʼs Republic of China
,
Yan Zhang*
2   Department of Pharmacology, University of California, Irvine, California, United States
,
Zhimou Guo
1   Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Peopleʼs Republic of China
,
Lien Wang
2   Department of Pharmacology, University of California, Irvine, California, United States
,
Xingya Xue
1   Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Peopleʼs Republic of China
,
Xiuli Zhang
1   Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Peopleʼs Republic of China
,
Shisheng Wang
3   School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, Peopleʼs Republic of China
,
Zhiwei Wang
2   Department of Pharmacology, University of California, Irvine, California, United States
,
Olivier Civelli
2   Department of Pharmacology, University of California, Irvine, California, United States
,
Xinmiao Liang
1   Key Laboratory of Separation Science for Analytical Chemistry, Key Lab of Natural Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Peopleʼs Republic of China
› Author Affiliations
Further Information

Publication History

received 22 February 2014
revised 03 July 2014

accepted 09 July 2014

Publication Date:
15 August 2014 (online)

Abstract

Four new hydroxycinnamic acid amides, scotanamines A–D (14), and seven known alkaloids, including N 1,N 10-di-dihydrocaffeoylspermidine (5), scopolamine (6), anisodamine (7), hyoscyamine (8), anisodine (9), caffeoylputrescine (10), and N 1-caffeoyl-N 3-dihydrocaffeoylspermidine (11), were obtained from the roots of Scopolia tangutica. The present study represents the first recognition of hydroxycinnamic acid amides containing putrescine or spermidine in S. tangutica. Compound 1, in particular, contains a moiety resulting from the condensation of nortropinone and putrescine. Compound 2 exhibited moderate agonist activity at the µ-opioid receptor (EC50 = 7.3 µM). Compound 2 was tested in vivo and induced analgesia in mice. The analgesic effect was recorded using the tail-flick assay and was reversed by naloxone.

* These authors contributed equally to this work.


Supporting Information

 
  • References

  • 1 Roberts MF, Wink M. Alkaloids: biochemistry, ecology, and medicinal applications. New York: Plenum Press; 1998: 5-6
  • 2 Heinrich M, Hettenhausen C, Lange T, Wuensche H, Fang J, Baldwin IT, Wu J. High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the growth of Nicotiana attenuata stems. Plant Journal 2013; 73: 591-606
  • 3 Aher V, Chattopadhyay P, Goyary D, Veer V. Evaluation of the genotoxic and antigenotoxic potential of the alkaloid punarnavine from Boerhaavia diffusa . Planta Med 2013; 79: 939-945
  • 4 Hyuga S, Hyuga M, Yoshimura M, Amakura Y, Goda Y, Hanawa T. Herbacetin, a constituent of ephedrae herba, suppresses the HGF-induced motility of human breast cancer MDA-MB-231 cells by inhibiting c-met and akt phosphorylation. Planta Med 2013; 79: 1525-1530
  • 5 Ibrahim SRM, Mohamed GA, Shaala LA, Youssef DTA, El Sayed KA. New alkaloids from Pancratium maritimum . Planta Med 2013; 79: 1480-1484
  • 6 Ndunda B, Langat MK, Wanjohi JM, Midiwo JO, Kerubo LO. Alienusolin, a new 4 alpha-deoxyphorbol ester derivative, and crotonimide C, a new glutarimide alkaloid from the kenyan Croton alienus . Planta Med 2013; 79: 1762-1766
  • 7 Varma DR, Yue TL. Adrenoceptor blocking properties of atropine-like agents anisodamine and anisodine on brain and cardiovascular tissues of rats. Br J Pharmac 1986; 87: 587-594
  • 8 Xiu RJ, Hammerschmidt DE, Coppo PA, Jacob HS. Anisodamine inhibits thromboxane synthesis, granulocyte aggregation, and platelet aggregation. A possible mechanism for its efficacy in bacteremic shock. JAMA 1982; 247: 1458-1460
  • 9 Zhang WW, Song MK, Cui YY, Wang H, Zhu L, Niu YY, Yang LM, Lu Y, Hong ZC. Differential neuropsychopharmacological influences of naturally occurring tropane alkaloids anisodamine versus scopolamine. Neurosci Lett 2008; 443: 241-245
  • 10 Zheng W, Wang L, Meng L, Liu J. Genetic variation in the endangered Anisodus tanguticus (Solanaceae), an alpine perennial endemic to the Qinghai Tibetan plateau. Genetica 2008; 132: 123-129
  • 11 Long Z, Wang C, Guo Z, Zhang X, Nordahl L, Zeng J, Zeng J, Liang X. A non-aqueous solid phase extraction method for alkaloid enrichment and its application in the determination of hyoscyamine and scopolamine. Analyst 2012; 137: 1451-1457
  • 12 Minina SA, Astakhova TV, Fesenko DA. Alkaloids of Scopolia tangutica . Chem Nat Compd 1977; 13: 598
  • 13 Xiao P, Guangcheng X, Liyi H. The occurrence of important atropane alkaloids in Chinese solanaceous plants. Acta Botanica Sinica 1973; 15: 187-194
  • 14 Poupko JM, Baskin SI, Moore E. The pharmacological properties of anisodamine. J Appl Toxicol 2007; 27: 116-121
  • 15 Samoryadov BA, Minina SA. Isolation of hyoscyamine and scopolamine from the epigeal part of Scopolia tangutica . Chem Nat Compd 1971; 7: 205-206
  • 16 Shimomura K, Yoshimatsu K, Ishimaru K, Sauerwein M. Tropane alkaloids in root cultures of solanaceous plants. Stud Nat Prod Chem 1995; 17: 395-419
  • 17 Scholten HJ, Batterman S, Visser JF. Scopolia spp: in vitro culture and the production of scopolamine and hyoscyamine. Biotechnol Agricult Forest 1993; 21: 314-325
  • 18 Sattar EA, Glasl H, Nahrstedt A, Hilal SH, Zaki AY, Elzalabani SMH. Hydroxycinnamic acid-amides from Iochroma cyaneum . Phytochemistry 1990; 29: 3931-3933
  • 19 Taha AM, Rucker G. 13C-NMR spectroscopy of tropane alkaloids. J Pharm Sci 1978; 67: 775-779
  • 20 Lanoue A, Boitel CM, Portais JC, Laberche JC, Barbotin JN, Christen P, Sangwan NB. Kinetic study of littorine rearrangement in Datura innoxia hairy roots by C-13 NMR spectroscopy. J Nat Prod 2002; 65: 1131-1135
  • 21 Chang JB, Xie WL, Wang LM, Ma NC, Cheng SX, Xie J. An efficient approach to the asymmetric total synthesis of (−)-anisodine. Eur J Med Chem 2006; 41: 397-400
  • 22 Mbadiwe EI. Caffeoylputrescine from Pentaclethra macrophylla . Phytochemistry 1973; 12: 2546
  • 23 Buta JG, Izac RR. Caffeoylputrescine in Nicotiana tabacum . Phytochemistry 1972; 11: 1188-1189
  • 24 Shigennobu M, Yoko T, Masao N, Tamaki E. P-coumaroylputrescine, caffeoylputrescine and feruloylputrescine from callus tissue culture of Nicotiana tabacum . Phytochemistry 1971; 10: 1347-1350
  • 25 Noguchi S. A new aromatic amide, caffeoylputrescine from callus tissue culture of Nicotiana tabacum . Agric Biol Chem 1970; 34: 972-973
  • 26 Kawahara T, Izumikawa M, Otoguro M, Yamamura H, Hayakawa M, Takagi M, Shin YK. JBIR-94 and JBIR-125, antioxidative phenolic compounds from streptomyces sp R56-07. J Nat Prod 2012; 75: 107-110
  • 27 Capon RJ, Stewart M, Ratnayake R, Lacey E, Gill JH. Citromycetins and bilains A–C: new aromatic polyketides and diketopiperazines from Australian marine-derived and terrestrial Penicillium spp. J Nat Prod 2007; 70: 1746-1752
  • 28 Yoshida E, Mitsui H, Takahashi H, Maruo B. Amino acid incorporation by a bacterial cell-free system. J Biochem 1960; 48: 251-261
  • 29 Martinta J, Martin C, Gallet M. Presence of aromatic-compounds connected to putrescence in various virose Nicotiana species. Acad Sci Ser III 1973; 276: 1433-1435
  • 30 Zhang JX, Guan SH, Feng RH, Wang Y, Wu ZY, Zhang YB, Chen XH, Bi KS, Guo DA. Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense . J Nat Prod 2013; 76: 51-58
  • 31 Funayama S, Yoshida K, Konno C, Hikino H. Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks. Tetrahedron Lett 1980; 21: 1355-1356
  • 32 Crofford LJ. Adverse effects of chronic opioid therapy for chronic musculoskeletal pain. Nat Rev Rheumatol 2010; 6: 191-197
  • 33 Zhang Y, Xu J, Wang Z, Zhang X, Liang X, Civelli O. BmK-YA, an enkephalin-like peptide in scorpion venom. PLoS One 2012; 7: 1-8
  • 34 Damour FE, Smith DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther 1941; 72: 74-79