Semin Reprod Med 2014; 32(05): 337-345
DOI: 10.1055/s-0034-1376353
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Implantation: Mutual Activity of Sex Steroid Hormones and the Immune System Guarantee the Maternal–Embryo Interaction

Yulia Gnainsky
1   Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
,
Nava Dekel
1   Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
,
Irit Granot
2   IVF Unit, Herzliya Medical Center, Herzliya, Israel
› Author Affiliations
Further Information

Publication History

Publication Date:
24 June 2014 (online)

Abstract

Implantation is strictly dependent on the mutual interaction between a receptive endometrium and the blastocyst. Hence, synchronization between blastocyst development and the acquisition of endometrial receptivity is a prerequisite for the success of this process. This review depicts the cellular and molecular events that coordinate these complex activities. Specifically, the involvement of the sex steroid hormones, estrogen and progesterone, as well as components of the immune system, such as cytokines and specific blood cells, is elaborated.

 
  • References

  • 1 King AE, Critchley HO. Oestrogen and progesterone regulation of inflammatory processes in the human endometrium. J Steroid Biochem Mol Biol 2010; 120 (2–3) 116-126
  • 2 Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med 2012; 18 (12) 1754-1767
  • 3 Winuthayanon W, Hewitt SC, Orvis GD, Behringer RR, Korach KS. Uterine epithelial estrogen receptor α is dispensable for proliferation but essential for complete biological and biochemical responses. Proc Natl Acad Sci U S A 2010; 107 (45) 19272-19277
  • 4 Stewart CL, Kaspar P, Brunet LJ , et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992; 359 (6390) 76-79
  • 5 Song H, Lim H, Das SK, Paria BC, Dey SK. Dysregulation of EGF family of growth factors and COX-2 in the uterus during the preattachment and attachment reactions of the blastocyst with the luminal epithelium correlates with implantation failure in LIF-deficient mice. Mol Endocrinol 2000; 14 (8) 1147-1161
  • 6 Cheng JG, Chen JR, Hernandez L, Alvord WG, Stewart CL. Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc Natl Acad Sci U S A 2001; 98 (15) 8680-8685
  • 7 Pawar S, Starosvetsky E, Orvis GD, Behringer RR, Bagchi IC, Bagchi MK. STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol Endocrinol 2013; 27 (12) 1996-2012
  • 8 Cullinan EB, Abbondanzo SJ, Anderson PS, Pollard JW, Lessey BA, Stewart CL. Leukemia inhibitory factor (LIF) and LIF receptor expression in human endometrium suggests a potential autocrine/paracrine function in regulating embryo implantation. Proc Natl Acad Sci U S A 1996; 93 (7) 3115-3120
  • 9 Wu M, Yin Y, Zhao M, Hu L, Chen Q. The low expression of leukemia inhibitory factor in endometrium: possible relevant to unexplained infertility with multiple implantation failures. Cytokine 2013; 62 (2) 334-339
  • 10 Mariee N, Li TC, Laird SM. Expression of leukaemia inhibitory factor and interleukin 15 in endometrium of women with recurrent implantation failure after IVF; correlation with the number of endometrial natural killer cells. Hum Reprod 2012; 27 (7) 1946-1954
  • 11 Dimitriadis E, Stoikos C, Stafford-Bell M , et al. Interleukin-11, IL-11 receptoralpha and leukemia inhibitory factor are dysregulated in endometrium of infertile women with endometriosis during the implantation window. J Reprod Immunol 2006; 69 (1) 53-64
  • 12 Mikolajczyk M, Wirstlein P, Skrzypczak J. Leukaemia inhibitory factor and interleukin 11 levels in uterine flushings of infertile patients with endometriosis. Hum Reprod 2006; 21 (12) 3054-3058
  • 13 Xu B, Sun X, Li L, Wu L, Zhang A, Feng Y. Pinopodes, leukemia inhibitory factor, integrin-β3, and mucin-1 expression in the peri-implantation endometrium of women with unexplained recurrent pregnancy loss. Fertil Steril 2012; 98 (2) 389-395
  • 14 Brinsden PR, Alam V, de Moustier B, Engrand P. Recombinant human leukemia inhibitory factor does not improve implantation and pregnancy outcomes after assisted reproductive techniques in women with recurrent unexplained implantation failure. Fertil Steril 2009; 91 (4, Suppl): 1445-1447
  • 15 Halasz M, Szekeres-Bartho J. The role of progesterone in implantation and trophoblast invasion. J Reprod Immunol 2013; 97 (1) 43-50
  • 16 Graham JD, Clarke CL. Expression and transcriptional activity of progesterone receptor A and progesterone receptor B in mammalian cells. Breast Cancer Res 2002; 4 (5) 187-190
  • 17 Conneely OM, Mulac-Jericevic B, Lydon JP. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids 2003; 68 (10-13) 771-778
  • 18 Tranguch S, Cheung-Flynn J, Daikoku T , et al. Cochaperone immunophilin FKBP52 is critical to uterine receptivity for embryo implantation. Proc Natl Acad Sci U S A 2005; 102 (40) 14326-14331
  • 19 Hirota Y, Tranguch S, Daikoku T , et al. Deficiency of immunophilin FKBP52 promotes endometriosis. Am J Pathol 2008; 173 (6) 1747-1757
  • 20 Yang H, Zhou Y, Edelshain B, Schatz F, Lockwood CJ, Taylor HS. FKBP4 is regulated by HOXA10 during decidualization and in endometriosis. Reproduction 2012; 143 (4) 531-538
  • 21 Lim H, Ma L, Ma WG, Maas RL, Dey SK. Hoxa-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol Endocrinol 1999; 13 (6) 1005-1017
  • 22 Dessain S, Gross CT, Kuziora MA, McGinnis W. Antp-type homeodomains have distinct DNA binding specificities that correlate with their different regulatory functions in embryos. EMBO J 1992; 11 (3) 991-1002
  • 23 Ekker SC, Jackson DG, von Kessler DP, Sun BI, Young KE, Beachy PA. The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. EMBO J 1994; 13 (15) 3551-3560
  • 24 Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 1996; 122 (9) 2687-2696
  • 25 Mukherjee A, Amato P, Allred DC, DeMayo FJ, Lydon JP. Steroid receptor coactivator 2 is required for female fertility and mammary morphogenesis: insights from the mouse, relevance to the human. Nucl Recept Signal 2007; 5: e011
  • 26 Wei Q, Levens ED, Stefansson L, Nieman LK. Indian Hedgehog and its targets in human endometrium: menstrual cycle expression and response to CDB-2914. J Clin Endocrinol Metab 2010; 95 (12) 5330-5337
  • 27 Petit FG, Jamin SP, Kurihara I , et al. Deletion of the orphan nuclear receptor COUP-TFII in uterus leads to placental deficiency. Proc Natl Acad Sci U S A 2007; 104 (15) 6293-6298
  • 28 Li Q, Kannan A, DeMayo FJ , et al. The antiproliferative action of progesterone in uterine epithelium is mediated by Hand2. Science 2011; 331 (6019) 912-916
  • 29 Lee KY, Jeong JW, Wang J , et al. Bmp2 is critical for the murine uterine decidual response. Mol Cell Biol 2007; 27 (15) 5468-5478
  • 30 Li Q, Kannan A, Wang W , et al. Bone morphogenetic protein 2 functions via a conserved signaling pathway involving Wnt4 to regulate uterine decidualization in the mouse and the human. J Biol Chem 2007; 282 (43) 31725-31732
  • 31 Nie G, Li Y, Wang M, Liu YX, Findlay JK, Salamonsen LA. Inhibiting uterine PC6 blocks embryo implantation: an obligatory role for a proprotein convertase in fertility. Biol Reprod 2005; 72 (4) 1029-1036
  • 32 Okada H, Nie G, Salamonsen LA. Requirement for proprotein convertase 5/6 during decidualization of human endometrial stromal cells in vitro. J Clin Endocrinol Metab 2005; 90 (2) 1028-1034
  • 33 Heng S, Cervero A, Simon C , et al. Proprotein convertase 5/6 is critical for embryo implantation in women: regulating receptivity by cleaving EBP50, modulating ezrin binding, and membrane-cytoskeletal interactions. Endocrinology 2011; 152 (12) 5041-5052
  • 34 Granot I, Gnainsky Y, Dekel N. Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction 2012; 144 (6) 661-668
  • 35 Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci 2011; 1221: 80-87
  • 36 Lim H, Paria BC, Das SK , et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 1997; 91 (2) 197-208
  • 37 Song H, Lim H, Paria BC , et al. Cytosolic phospholipase A2alpha is crucial for 'on-time' embryo implantation that directs subsequent development. Development 2002; 129 (12) 2879-2889
  • 38 Ye X, Hama K, Contos JJ , et al. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 2005; 435 (7038) 104-108
  • 39 Vilella F, Ramirez L, Berlanga O , et al. PGE2 and PGF2α concentrations in human endometrial fluid as biomarkers for embryonic implantation. J Clin Endocrinol Metab 2013; 98 (10) 4123-4132
  • 40 Robertson SA. Control of the immunological environment of the uterus. Rev Reprod 2000; 5 (3) 164-174
  • 41 Croy BA, He H, Esadeg S , et al. Uterine natural killer cells: insights into their cellular and molecular biology from mouse modelling. Reproduction 2003; 126 (2) 149-160
  • 42 Kopcow HD, Allan DS, Chen X , et al. Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A 2005; 102 (43) 15563-15568
  • 43 Verma S, Hiby SE, Loke YW, King A. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol Reprod 2000; 62 (4) 959-968
  • 44 Manaster I, Mizrahi S, Goldman-Wohl D , et al. Endometrial NK cells are special immature cells that await pregnancy. J Immunol 2008; 181 (3) 1869-1876
  • 45 Co EC, Gormley M, Kapidzic M , et al. Maternal decidual macrophages inhibit NK cell killing of invasive cytotrophoblasts during human pregnancy. Biol Reprod 2013; 88 (6) 155
  • 46 Kämmerer U. Antigen-presenting cells in the decidua. Chem Immunol Allergy 2005; 89: 96-104
  • 47 Rieger L, Honig A, Sütterlin M , et al. Antigen-presenting cells in human endometrium during the menstrual cycle compared to early pregnancy. J Soc Gynecol Investig 2004; 11 (7) 488-493
  • 48 Thiruchelvam U, Dransfield I, Saunders PT, Critchley HO. The importance of the macrophage within the human endometrium. J Leukoc Biol 2013; 93 (2) 217-225
  • 49 Krey G, Frank P, Shaikly V , et al. In vivo dendritic cell depletion reduces breeding efficiency, affecting implantation and early placental development in mice. J Mol Med (Berl) 2008; 86 (9) 999-1011
  • 50 Plaks V, Birnberg T, Berkutzki T , et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest 2008; 118 (12) 3954-3965
  • 51 Blois S, Alba Soto CD, Olmos S , et al. Therapy with dendritic cells influences the spontaneous resorption rate in the CBA/J x DBA/2J mouse model. Am J Reprod Immunol 2004; 51 (1) 40-48
  • 52 Karimzadeh MA, Ayazi Rozbahani M, Tabibnejad N. Endometrial local injury improves the pregnancy rate among recurrent implantation failure patients undergoing in vitro fertilisation/intra cytoplasmic sperm injection: a randomised clinical trial. Aust N Z J Obstet Gynaecol 2009; 49 (6) 677-680
  • 53 Barash A, Dekel N, Fieldust S, Segal I, Schechtman E, Granot I. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril 2003; 79 (6) 1317-1322
  • 54 Raziel A, Schachter M, Strassburger D, Bern O, Ron-El R, Friedler S. Favorable influence of local injury to the endometrium in intracytoplasmic sperm injection patients with high-order implantation failure. Fertil Steril 2007; 87 (1) 198-201
  • 55 Zhou L, Li R, Wang R, Huang HX, Zhong K. Local injury to the endometrium in controlled ovarian hyperstimulation cycles improves implantation rates. Fertil Steril 2008; 89 (5) 1166-1176
  • 56 Narvekar SA, Gupta N, Shetty N, Kottur A, Srinivas M, Rao KA. Does local endometrial injury in the nontransfer cycle improve the IVF-ET outcome in the subsequent cycle in patients with previous unsuccessful IVF? A randomized controlled pilot study. J Hum Reprod Sci 2010; 3 (1) 15-19
  • 57 Tiboni GM, Giampietro F, Gabriele E, Di Donato V, Impicciatore GG. Impact of a single endometrial injury on assisted reproductive technology outcome: a preliminary observational study. J Reprod Med 2011; 56 (11-12) 504-506
  • 58 Gibreel A, Badawy A, El-Refai W, El-Adawi N. Endometrial scratching to improve pregnancy rate in couples with unexplained subfertility: a randomized controlled trial. J Obstet Gynaecol Res 2013; 39 (3) 680-684
  • 59 Gnainsky Y, Granot I, Aldo PB , et al. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil Steril 2010; 94 (6) 2030-2036
  • 60 Miyazaki S, Tsuda H, Sakai M , et al. Predominance of Th2-promoting dendritic cells in early human pregnancy decidua. J Leukoc Biol 2003; 74 (4) 514-522
  • 61 Nagamatsu T, Schust DJ. The contribution of macrophages to normal and pathological pregnancies. Am J Reprod Immunol 2010; 63 (6) 460-471
  • 62 Houser BL, Tilburgs T, Hill J, Nicotra ML, Strominger JL. Two unique human decidual macrophage populations. J Immunol 2011; 186 (4) 2633-2642
  • 63 Cork BA, Li TC, Warren MA, Laird SM. Interleukin-11 (IL-11) in human endometrium: expression throughout the menstrual cycle and the effects of cytokines on endometrial IL-11 production in vitro. J Reprod Immunol 2001; 50 (1) 3-17
  • 64 Arici A, Engin O, Attar E, Olive DL. Modulation of leukemia inhibitory factor gene expression and protein biosynthesis in human endometrium. J Clin Endocrinol Metab 1995; 80 (6) 1908-1915
  • 65 Carlino C, Stabile H, Morrone S , et al. Recruitment of circulating NK cells through decidual tissues: a possible mechanism controlling NK cell accumulation in the uterus during early pregnancy. Blood 2008; 111 (6) 3108-3115
  • 66 Kitaya K, Nakayama T, Okubo T, Kuroboshi H, Fushiki S, Honjo H. Expression of macrophage inflammatory protein-1beta in human endometrium: its role in endometrial recruitment of natural killer cells. J Clin Endocrinol Metab 2003; 88 (4) 1809-1814
  • 67 Salama SA, Kamel MW, Diaz-Arrastia CR , et al. Effect of tumor necrosis factor-alpha on estrogen metabolism and endometrial cells: potential physiological and pathological relevance. J Clin Endocrinol Metab 2009; 94 (1) 285-293
  • 68 Li R, Hao G. Local injury to the endometrium: its effect on implantation. Curr Opin Obstet Gynecol 2009; 21 (3) 236-239
  • 69 Gargett CE. Uterine stem cells: what is the evidence?. Hum Reprod Update 2007; 13 (1) 87-101
  • 70 Chan RW, Gargett CE. Identification of label-retaining cells in mouse endometrium. Stem Cells 2006; 24 (6) 1529-1538
  • 71 Gargett CE, Masuda H. Adult stem cells in the endometrium. Mol Hum Reprod 2010; 16 (11) 818-834
  • 72 Hyodo S, Matsubara K, Kameda K, Matsubara Y. Endometrial injury increases side population cells in the uterine endometrium: a decisive role of estrogen. Tohoku J Exp Med 2011; 224 (1) 47-55
  • 73 Dominguez F, Yáñez-Mó M, Sanchez-Madrid F, Simón C. Embryonic implantation and leukocyte transendothelial migration: different processes with similar players?. FASEB J 2005; 19 (9) 1056-1060
  • 74 Genbacev OD, Prakobphol A, Foulk RA , et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science 2003; 299 (5605) 405-408
  • 75 Arbonés ML, Ord DC, Ley K , et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1994; 1 (4) 247-260
  • 76 Margarit L, Gonzalez D, Lewis PD , et al. L-selectin ligands in human endometrium: comparison of fertile and infertile subjects. Hum Reprod 2009; 24 (11) 2767-2777
  • 77 Foulk RA, Zdravkovic T, Genbacev O, Prakobphol A. Expression of L-selectin ligand MECA-79 as a predictive marker of human uterine receptivity. J Assist Reprod Genet 2007; 24 (7) 316-321
  • 78 Liu S, Zhang Y, Liu Y, Qin H, Wang X, Yan Q. FUT7 antisense sequence inhibits the expression of FUT7/sLeX and adhesion between embryonic and uterine cells. IUBMB Life 2008; 60 (7) 461-466
  • 79 Zhang Y, Liu S, Liu Y, Wang Z, Wang X, Yan Q. Overexpression of fucosyltransferase VII (FUT7) promotes embryo adhesion and implantation. Fertil Steril 2009; 91 (3) 908-914
  • 80 Nejatbakhsh R, Kabir-Salmani M, Dimitriadis E , et al. Subcellular localization of L-selectin ligand in the endometrium implies a novel function for pinopodes in endometrial receptivity. Reprod Biol Endocrinol 2012; 10: 46
  • 81 Lim HJ, Dey SKHB-EGF. HB-EGF: a unique mediator of embryo-uterine interactions during implantation. Exp Cell Res 2009; 315 (4) 619-626
  • 82 Das SK, Wang XN, Paria BC , et al. Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 1994; 120 (5) 1071-1083
  • 83 Yoo HJ, Barlow DH, Mardon HJ. Temporal and spatial regulation of expression of heparin-binding epidermal growth factor-like growth factor in the human endometrium: a possible role in blastocyst implantation. Dev Genet 1997; 21 (1) 102-108
  • 84 Lessey BA, Gui Y, Apparao KB, Young SL, Mulholland J. Regulated expression of heparin-binding EGF-like growth factor (HB-EGF) in the human endometrium: a potential paracrine role during implantation. Mol Reprod Dev 2002; 62 (4) 446-455
  • 85 Stavreus-Evers A, Aghajanova L, Brismar H, Eriksson H, Landgren BM, Hovatta O. Co-existence of heparin-binding epidermal growth factor-like growth factor and pinopodes in human endometrium at the time of implantation. Mol Hum Reprod 2002; 8 (8) 765-769
  • 86 Paria BC, Elenius K, Klagsbrun M, Dey SK. Heparin-binding EGF-like growth factor interacts with mouse blastocysts independently of ErbB1: a possible role for heparan sulfate proteoglycans and ErbB4 in blastocyst implantation. Development 1999; 126 (9) 1997-2005
  • 87 Xie H, Wang H, Tranguch S , et al. Maternal heparin-binding-EGF deficiency limits pregnancy success in mice. Proc Natl Acad Sci U S A 2007; 104 (46) 18315-18320
  • 88 Chobotova K, Spyropoulou I, Carver J , et al. Heparin-binding epidermal growth factor and its receptor ErbB4 mediate implantation of the human blastocyst. Mech Dev 2002; 119 (2) 137-144
  • 89 Wang J, Mayernik L, Schultz JF, Armant DR. Acceleration of trophoblast differentiation by heparin-binding EGF-like growth factor is dependent on the stage-specific activation of calcium influx by ErbB receptors in developing mouse blastocysts. Development 2000; 127 (1) 33-44
  • 90 Dekel N, Gnainsky Y, Granot I, Mor G. Inflammation and implantation. Am J Reprod Immunol 2010; 63 (1) 17-21
  • 91 Dominguez F, Martínez S, Quiñonero A , et al. CXCL10 and IL-6 induce chemotaxis in human trophoblast cell lines. Mol Hum Reprod 2008; 14 (7) 423-430
  • 92 Hannan NJ, Jones RL, White CA, Salamonsen LA. The chemokines, CX3CL1, CCL14, and CCL4, promote human trophoblast migration at the feto-maternal interface. Biol Reprod 2006; 74 (5) 896-904
  • 93 Sela HY, Goldman-Wohl DS, Haimov-Kochman R , et al. Human trophectoderm apposition is regulated by interferon γ-induced protein 10 (IP-10) during early implantation. Placenta 2013; 34 (3) 222-230
  • 94 Boomsma CM, Kavelaars A, Eijkemans MJ , et al. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum Reprod 2009; 24 (6) 1427-1435
  • 95 Nagaoka K, Nojima H, Watanabe F , et al. Regulation of blastocyst migration, apposition, and initial adhesion by a chemokine, interferon gamma-inducible protein 10 kDa (IP-10), during early gestation. J Biol Chem 2003; 278 (31) 29048-29056
  • 96 Singh H, Nardo L, Kimber SJ, Aplin JD. Early stages of implantation as revealed by an in vitro model. Reproduction 2010; 139 (5) 905-914
  • 97 Meseguer M, Aplin JD, Caballero-Campo P , et al. Human endometrial mucin MUC1 is up-regulated by progesterone and down-regulated in vitro by the human blastocyst. Biol Reprod 2001; 64 (2) 590-601
  • 98 Thathiah A, Brayman M, Dharmaraj N, Julian JJ, Lagow EL, Carson DD. Tumor necrosis factor alpha stimulates MUC1 synthesis and ectodomain release in a human uterine epithelial cell line. Endocrinology 2004; 145 (9) 4192-4203
  • 99 Horne AW, Lalani EN, Margara RA, White JO. The effects of sex steroid hormones and interleukin-1-beta on MUC1 expression in endometrial epithelial cell lines. Reproduction 2006; 131 (4) 733-742
  • 100 Dharmaraj N, Wang P, Carson DD. Cytokine and progesterone receptor interplay in the regulation of MUC1 gene expression. Mol Endocrinol 2010; 24 (12) 2253-2266
  • 101 Thathiah A, Blobel CP, Carson DD. Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUC1 shedding. J Biol Chem 2003; 278 (5) 3386-3394
  • 102 Thathiah A, Carson DD. MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17. Biochem J 2004; 382 (Pt 1) 363-373
  • 103 Gipson IK, Blalock T, Tisdale A , et al. MUC16 is lost from the uterodome (pinopode) surface of the receptive human endometrium: in vitro evidence that MUC16 is a barrier to trophoblast adherence. Biol Reprod 2008; 78 (1) 134-142
  • 104 Singh H, Aplin JD. Adhesion molecules in endometrial epithelium: tissue integrity and embryo implantation. J Anat 2009; 215 (1) 3-13
  • 105 Johnson GA, Burghardt RC, Bazer FW, Spencer TE. Osteopontin: roles in implantation and placentation. Biol Reprod 2003; 69 (5) 1458-1471
  • 106 Liu N, Zhou C, Chen Y, Zhao J. The involvement of osteopontin and β3 integrin in implantation and endometrial receptivity in an early mouse pregnancy model. Eur J Obstet Gynecol Reprod Biol 2013; 170 (1) 171-176
  • 107 Chaen T, Konno T, Egashira M , et al. Estrogen-dependent uterine secretion of osteopontin activates blastocyst adhesion competence. PLoS ONE 2012; 7 (11) e48933
  • 108 Illera MJ, Cullinan E, Gui Y, Yuan L, Beyler SA, Lessey BA. Blockade of the alpha(v)beta(3) integrin adversely affects implantation in the mouse. Biol Reprod 2000; 62 (5) 1285-1290
  • 109 Kaneko Y, Day ML, Murphy CR. Integrin β3 in rat blastocysts and epithelial cells is essential for implantation in vitro: studies with Ishikawa cells and small interfering RNA transfection. Hum Reprod 2011; 26 (7) 1665-1674
  • 110 Casals G, Ordi J, Creus M , et al. Osteopontin and alphavbeta3 integrin as markers of endometrial receptivity: the effect of different hormone therapies. Reprod Biomed Online 2010; 21 (3) 349-359
  • 111 Lessey BA, Damjanovich L, Coutifaris C, Castelbaum A, Albelda SM, Buck CA. Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle. J Clin Invest 1992; 90 (1) 188-195
  • 112 Boroujerdnia MG, Nikbakht R. Beta3 integrin expression within uterine endometrium and its relationship with unexplained infertility. Pak J Biol Sci 2008; 11 (21) 2495-2499
  • 113 Othman R, Omar MH, Shan LP, Shafiee MN, Jamal R, Mokhtar NM. Microarray profiling of secretory-phase endometrium from patients with recurrent miscarriage. Reprod Biol 2012; 12 (2) 183-199
  • 114 Coughlan C, Sinagra M, Ledger W, Li TC, Laird S. Endometrial integrin expression in women with recurrent implantation failure after in vitro fertilization and its relationship to pregnancy outcome. Fertil Steril 2013; 100 (3) 825-830
  • 115 Casals G, Ordi J, Creus M , et al. Osteopontin and alphavbeta3 integrin expression in the endometrium of infertile and fertile women. Reprod Biomed Online 2008; 16 (6) 808-816
  • 116 Creus M, Ordi J, Fábregues F , et al. alphavbeta3 integrin expression and pinopod formation in normal and out-of-phase endometria of fertile and infertile women. Hum Reprod 2002; 17 (9) 2279-2286
  • 117 Daftary GS, Troy PJ, Bagot CN, Young SL, Taylor HS. Direct regulation of beta3-integrin subunit gene expression by HOXA10 in endometrial cells. Mol Endocrinol 2002; 16 (3) 571-579
  • 118 Zhu LH, Sun LH, Hu YL , et al. PCAF impairs endometrial receptivity and embryo implantation by down-regulating β3-integrin expression via HOXA10 acetylation. J Clin Endocrinol Metab 2013; 98 (11) 4417-4428
  • 119 Somkuti SG, Yuan L, Fritz MA, Lessey BA. Epidermal growth factor and sex steroids dynamically regulate a marker of endometrial receptivity in Ishikawa cells. J Clin Endocrinol Metab 1997; 82 (7) 2192-2197
  • 120 Simón C, Gimeno MJ, Mercader A , et al. Embryonic regulation of integrins beta 3, alpha 4, and alpha 1 in human endometrial epithelial cells in vitro. J Clin Endocrinol Metab 1997; 82 (8) 2607-2616
  • 121 Cuman C, Menkhorst EM, Rombauts LJ , et al. Preimplantation human blastocysts release factors that differentially alter human endometrial epithelial cell adhesion and gene expression relative to IVF success. Hum Reprod 2013; 28 (5) 1161-1171
  • 122 Godbole G, Suman P, Gupta SK, Modi D. Decidualized endometrial stromal cell derived factors promote trophoblast invasion. Fertil Steril 2011; 95 (4) 1278-1283
  • 123 Hanna J, Goldman-Wohl D, Hamani Y , et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12 (9) 1065-1074
  • 124 Fitzgerald JS, Tsareva SA, Poehlmann TG , et al. Leukemia inhibitory factor triggers activation of signal transducer and activator of transcription 3, proliferation, invasiveness, and altered protease expression in choriocarcinoma cells. Int J Biochem Cell Biol 2005; 37 (11) 2284-2296
  • 125 Robson A, Harris LK, Innes BA , et al. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J 2012; 26 (12) 4876-4885
  • 126 Germeyer A, Sharkey AM, Prasadajudio M , et al. Paracrine effects of uterine leucocytes on gene expression of human uterine stromal fibroblasts. Mol Hum Reprod 2009; 15 (1) 39-48
  • 127 Nagamatsu T, Schust DJ. The immunomodulatory roles of macrophages at the maternal-fetal interface. Reprod Sci 2010; 17 (3) 209-218
  • 128 Abrahams VM, Kim YM, Straszewski SL, Romero R, Mor G. Macrophages and apoptotic cell clearance during pregnancy. Am J Reprod Immunol 2004; 51 (4) 275-282
  • 129 Hanna J, Wald O, Goldman-Wohl D , et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood 2003; 102 (5) 1569-1577
  • 130 Fest S, Aldo PB, Abrahams VM , et al. Trophoblast-macrophage interactions: a regulatory network for the protection of pregnancy. Am J Reprod Immunol 2007; 57 (1) 55-66
  • 131 Huang Y, Zhu XY, Du MR, Li DJ. Human trophoblasts recruited T lymphocytes and monocytes into decidua by secretion of chemokine CXCL16 and interaction with CXCR6 in the first-trimester pregnancy. J Immunol 2008; 180 (4) 2367-2375
  • 132 Jackson BC, Nebert DW, Vasiliou V. Update of human and mouse matrix metalloproteinase families. Hum Genomics 2010; 4 (3) 194-201
  • 133 Anacker J, Segerer SE, Hagemann C , et al. Human decidua and invasive trophoblasts are rich sources of nearly all human matrix metalloproteinases. Mol Hum Reprod 2011; 17 (10) 637-652
  • 134 Dilly M, Hambruch N, Haeger JD, Pfarrer C. Epidermal growth factor (EGF) induces motility and upregulates MMP-9 and TIMP-1 in bovine trophoblast cells. Mol Reprod Dev 2010; 77 (7) 622-629
  • 135 Qiu Q, Yang M, Tsang BK, Gruslin A. EGF-induced trophoblast secretion of MMP-9 and TIMP-1 involves activation of both PI3K and MAPK signalling pathways. Reproduction 2004; 128 (3) 355-363
  • 136 Jovanović M, Vićovac L. Interleukin-6 stimulates cell migration, invasion and integrin expression in HTR-8/SVneo cell line. Placenta 2009; 30 (4) 320-328
  • 137 Jovanović M, Stefanoska I, Radojcić L, Vićovac L. Interleukin-8 (CXCL8) stimulates trophoblast cell migration and invasion by increasing levels of matrix metalloproteinase (MMP)2 and MMP9 and integrins alpha5 and beta1. Reproduction 2010; 139 (4) 789-798
  • 138 Bischof P, Meisser A, Campana A. Paracrine and autocrine regulators of trophoblast invasion—a review. Placenta 2000; 21 (Suppl A ): S55-S60
  • 139 Karmakar S, Das C. Regulation of trophoblast invasion by IL-1beta and TGF-beta1. Am J Reprod Immunol 2002; 48 (4) 210-219
  • 140 Bilban M, Haslinger P, Prast J , et al. Identification of novel trophoblast invasion-related genes: heme oxygenase-1 controls motility via peroxisome proliferator-activated receptor gamma. Endocrinology 2009; 150 (2) 1000-1013
  • 141 Pollheimer J, Fock V, Knofler M. Review: the ADAM metalloproteinases - novel regulators of trophoblast invasion?. Placenta 2014; 35S: S57-S63
  • 142 Edgell TA, Rombauts LJ, Salamonsen LA. Assessing receptivity in the endometrium: the need for a rapid, non-invasive test. Reprod Biomed Online 2013; 27 (5) 486-496
  • 143 Ruiz-Alonso M, Blesa D, Díaz-Gimeno P , et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril 2013; 100 (3) 818-824
  • 144 Díaz-Gimeno P, Ruiz-Alonso M, Blesa D , et al. The accuracy and reproducibility of the endometrial receptivity array is superior to histology as a diagnostic method for endometrial receptivity. Fertil Steril 2013; 99 (2) 508-517
  • 145 Garrido-Gómez T, Ruiz-Alonso M, Blesa D, Diaz-Gimeno P, Vilella F, Simón C. Profiling the gene signature of endometrial receptivity: clinical results. Fertil Steril 2013; 99 (4) 1078-1085
  • 146 Blesa D, Ruiz-Alonso M, Simón C. Endometrium and implantation clinical managaement of endometrial receptivity. Semin Reprod Med 2014; 32 (5) 410-414