Semin Reprod Med 2014; 32(01): 035-042
DOI: 10.1055/s-0033-1361821
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Potential Influence of the Microbiome on Infertility and Assisted Reproductive Technology

Ido Sirota
1   Department of Obstetrics and Gynecology, St. Luke's-Roosevelt Hospital Center, New York, New York
,
Shvetha M. Zarek
2   Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
,
James H. Segars
2   Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
03 January 2014 (online)

Abstract

Although an altered vaginal microbiota has been demonstrated to affect parturition, its role in assisted reproductive technologies is uncertain. Nevertheless, the effect of known pathogens such as Mycoplasma tuberculosis, Chlamydia trachomatis, and Neisseria gonorrhoeae is clear, causing subclinical changes thought to be risk factors in subfertility. The Human Microbiome Project (HMP) has allowed for metagenomic studies to aid in characterizing normal vaginal flora. Recent findings from the HMP demonstrate that many different species of Lactobacillus are present in the vaginal tract, with a few that predominate. Studies that characterize the vaginal microbiome in assisted reproductive technology support the hypothesis that colonizing the transfer-catheter tip with Lactobacillus crispatus at the time of embryo transfer may increase the rates of implantation and live birth rate while decreasing the rate of infection. In addition, there is some evidence that a progesterone-resistant endometrium might increase the risk of an abnormal vaginal microbiome.

Note

The views expressed in this article are those of the authors and do not reflect the official policy or position of the U.S. Government.


 
  • References

  • 1 Venter JC, Adams MD, Myers EW , et al. The sequence of the human genome. Science 2001; 291 (5507) 1304-1351
  • 2 Relman DA. New technologies, human-microbe interactions, and the search for previously unrecognized pathogens. J Infect Dis 2002; 186 (Suppl. 02) S254-S258
  • 3 Relman DA, Falkow S. The meaning and impact of the human genome sequence for microbiology. Trends Microbiol 2001; 9 (5) 206-208
  • 4 Mullard A. Microbiology: the inside story. Nature 2008; 453 (7195): 578-580
  • 5 Peterson J, Garges S, Giovanni M , et al; NIH HMP Working Group. The NIH Human Microbiome Project. Genome Res 2009; 19 (12) 2317-2323
  • 6 van Oostrum N, De Sutter P, Meys J, Verstraelen H. Risks associated with bacterial vaginosis in infertility patients: a systematic review and meta-analysis. Hum Reprod 2013; 28 (7) 1809-1815
  • 7 Aagaard K, Petrosino J, Keitel W , et al. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J 2013; 27 (3) 1012-1022
  • 8 Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 1999; 69 (5) 1035S-1045S
  • 9 Favier CF, Vaughan EE, De Vos WM, Akkermans AD. Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 2002; 68 (1) 219-226
  • 10 Penders J, Thijs C, Vink C , et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006; 118 (2) 511-521
  • 11 Kurokawa K, Itoh T, Kuwahara T , et al. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 2007; 14 (4) 169-181
  • 12 Grönlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 1999; 28 (1) 19-25
  • 13 Dominguez-Bello MG, Costello EK, Contreras M , et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 2010; 107 (26) 11971-11975
  • 14 Sunderam S, Kissin DM, Flowers L , et al. Assisted reproductive technology surveillance–United States. MMWR Surveill Summ 2009; 61: 1-23
  • 15 Petrou S, Abangma G, Johnson S, Wolke D, Marlow N. Costs and health utilities associated with extremely preterm birth: evidence from the EPICure study. Value Health 2009; 12 (8) 1124-1134
  • 16 Keirse MJ. New perspectives for the effective treatment of preterm labor. Am J Obstet Gynecol 1995; 173 (2) 618-628
  • 17 Young LE. Imprinting of genes and the Barker hypothesis. Twin Res 2001; 4 (5) 307-317
  • 18 Kaminsky ZA, Tang T, Wang SC , et al. DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 2009; 41 (2) 240-245
  • 19 Watkins AJ, Papenbrock T, Fleming TP. The preimplantation embryo: handle with care. Semin Reprod Med 2008; 26 (2) 175-185
  • 20 Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449 (7164) 804-810
  • 21 Hawes SE, Hillier SL, Benedetti J , et al. Hydrogen peroxide-producing lactobacilli and acquisition of vaginal infections. J Infect Dis 1996; 174 (5) 1058-1063
  • 22 Aroutcheva AA, Simoes JA, Behbakht K, Faro S. Gardnerella vaginalis isolated from patients with bacterial vaginosis and from patients with healthy vaginal ecosystems. Clin Infect Dis 2001; 33 (7) 1022-1027
  • 23 Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC. Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 2009; 15 (2) 300-310
  • 24 Pavlova SI, Kilic AO, Kilic SS , et al. Genetic diversity of vaginal lactobacilli from women in different countries based on 16S rRNA gene sequences. J Appl Microbiol 2002; 92 (3) 451-459
  • 25 Burton JP, Reid G. Evaluation of the bacterial vaginal flora of 20 postmenopausal women by direct (Nugent score) and molecular (polymerase chain reaction and denaturing gradient gel electrophoresis) techniques. J Infect Dis 2002; 186 (12) 1770-1780
  • 26 Klein G, Pack A, Bonaparte C, Reuter G. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol 1998; 41 (2) 103-125
  • 27 Antonio MA, Hawes SE, Hillier SL. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis 1999; 180 (6) 1950-1956
  • 28 Reid G, McGroarty JA, Tomeczek L, Bruce AW. Identification and plasmid profiles of Lactobacillus species from the vagina of 100 healthy women. FEMS Immunol Med Microbiol 1996; 15 (1) 23-26
  • 29 Vásquez A, Jakobsson T, Ahrné S, Forsum U, Molin G. Vaginal lactobacillus flora of healthy Swedish women. J Clin Microbiol 2002; 40 (8) 2746-2749
  • 30 Tärnberg M, Jakobsson T, Jonasson J, Forsum U. Identification of randomly selected colonies of lactobacilli from normal vaginal fluid by pyrosequencing of the 16S rDNA variable V1 and V3 regions. APMIS 2002; 110 (11) 802-810
  • 31 Yamamoto T, Zhou X, Williams CJ, Hochwalt A, Forney LJ. Bacterial populations in the vaginas of healthy adolescent women. J Pediatr Adolesc Gynecol 2009; 22 (1) 11-18
  • 32 Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, Forney LJ. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 2004; 150 (Pt 8) 2565-2573
  • 33 Zhou X, Brown CJ, Abdo Z , et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J 2007; 1 (2) 121-133
  • 34 Thies FL, König W, König B. Rapid characterization of the normal and disturbed vaginal microbiota by application of 16S rRNA gene terminal RFLP fingerprinting. J Med Microbiol 2007; 56 (Pt 6) 755-761
  • 35 Shi Y, Chen L, Tong J, Xu C. Preliminary characterization of vaginal microbiota in healthy Chinese women using cultivation-independent methods. J Obstet Gynaecol Res 2009; 35 (3) 525-532
  • 36 Vitali B, Pugliese C, Biagi E , et al. Dynamics of vaginal bacterial communities in women developing bacterial vaginosis, candidiasis, or no infection, analyzed by PCR-denaturing gradient gel electrophoresis and real-time PCR. Appl Environ Microbiol 2007; 73 (18) 5731-5741
  • 37 Hyman RW, Herndon CN, Jiang H , et al. The dynamics of the vaginal microbiome during infertility therapy with in vitro fertilization-embryo transfer. J Assist Reprod Genet 2012; 29 (2) 105-115
  • 38 Jakobsson T, Forsum U. Changes in the predominant human Lactobacillus flora during in vitro fertilisation. Ann Clin Microbiol Antimicrob 2008; 7: 14
  • 39 Ahrné S, Nobaek S, Jeppsson B, Adlerberth I, Wold AE, Molin G. The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 1998; 85 (1) 88-94
  • 40 Skarin A, Sylwan J. Vaginal lactobacilli inhibiting growth of Gardnerella vaginalis, Mobiluncus and other bacterial species cultured from vaginal content of women with bacterial vaginosis. Acta Pathol Microbiol Immunol Scand [B] 1986; 94 (6) 399-403
  • 41 Eschenbach DA, Davick PR, Williams BL , et al. Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis. J Clin Microbiol 1989; 27 (2) 251-256
  • 42 Spiegel CA, Amsel R, Eschenbach D, Schoenknecht F, Holmes KK. Anaerobic bacteria in nonspecific vaginitis. N Engl J Med 1980; 303 (11) 601-607
  • 43 Gardner HL, Dukes CD. Haemophilus vaginalis vaginitis: a newly defined specific infection previously classified non-specific vaginitis. Am J Obstet Gynecol 1955; 69 (5) 962-976
  • 44 Spiegel CA, Amsel R, Holmes KK. Diagnosis of bacterial vaginosis by direct gram stain of vaginal fluid. J Clin Microbiol 1983; 18 (1) 170-177
  • 45 Amsel R, Totten PA, Spiegel CA, Chen KC, Eschenbach D, Holmes KK. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med 1983; 74 (1) 14-22
  • 46 Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol 1991; 29 (2) 297-301
  • 47 Ralph SG, Rutherford AJ, Wilson JD. Influence of bacterial vaginosis on conception and miscarriage in the first trimester: cohort study. BMJ 1999; 319 (7204) 220-223
  • 48 Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C, Pearson J. Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. BMJ 1994; 308 (6924): 295-298
  • 49 Gaudoin M, Rekha P, Morris A, Lynch J, Acharya U. Bacterial vaginosis and past chlamydial infection are strongly and independently associated with tubal infertility but do not affect in vitro fertilization success rates. Fertil Steril 1999; 72 (4) 730-732
  • 50 Witkin SS, Kligman I, Grifo JA, Rosenwaks Z. Chlamydia trachomatis detected by polymerase chain reaction in cervices of culture-negative women correlates with adverse in vitro fertilization outcome. J Infect Dis 1995; 171 (6) 1657-1659
  • 51 Leitich H, Kiss H. Asymptomatic bacterial vaginosis and intermediate flora as risk factors for adverse pregnancy outcome. Best Pract Res Clin Obstet Gynaecol 2007; 21 (3) 375-390
  • 52 Leitich H, Bodner-Adler B, Brunbauer M, Kaider A, Egarter C, Husslein P. Bacterial vaginosis as a risk factor for preterm delivery: a meta-analysis. Am J Obstet Gynecol 2003; 189 (1) 139-147
  • 53 Moore DE, Soules MR, Klein NA, Fujimoto VY, Agnew KJ, Eschenbach DA. Bacteria in the transfer catheter tip influence the live-birth rate after in vitro fertilization. Fertil Steril 2000; 74 (6) 1118-1124
  • 54 Egbase PE, al-Sharhan M, al-Othman S, al-Mutawa M, Udo EE, Grudzinskas JG. Incidence of microbial growth from the tip of the embryo transfer catheter after embryo transfer in relation to clinical pregnancy rate following in-vitro fertilization and embryo transfer. Hum Reprod 1996; 11 (8) 1687-1689
  • 55 Egbase PE, Udo EE, Al-Sharhan M, Grudzinskas JG. Prophylactic antibiotics and endocervical microbial inoculation of the endometrium at embryo transfer. Lancet 1999; 354 (9179) 651-652
  • 56 Fanchin R, Harmas A, Benaoudia F, Lundkvist U, Olivennes F, Frydman R. Microbial flora of the cervix assessed at the time of embryo transfer adversely affects in vitro fertilization outcome. Fertil Steril 1998; 70 (5) 866-870
  • 57 Hillier SL, Krohn MA, Rabe LK, Klebanoff SJ, Eschenbach DA. The normal vaginal flora, H2O2-producing lactobacilli, and bacterial vaginosis in pregnant women. Clin Infect Dis 1993; 16 (Suppl. 04) S273-S281
  • 58 Robertson SA, Chin PY, Glynn DJ, Thompson JG. Peri-conceptual cytokines—setting the trajectory for embryo implantation, pregnancy and beyond. Am J Reprod Immunol 2011; 66 (Suppl. 01) 2-10
  • 59 Hardy K, Spanos S. Growth factor expression and function in the human and mouse preimplantation embryo. J Endocrinol 2002; 172 (2) 221-236
  • 60 Díaz-Cueto L, Gerton GL. The influence of growth factors on the development of preimplantation mammalian embryos. Arch Med Res 2001; 32 (6) 619-626
  • 61 Kane MT, Morgan PM, Coonan C. Peptide growth factors and preimplantation development. Hum Reprod Update 1997; 3 (2) 137-157
  • 62 Kaye PL, Harvey MB. The role of growth factors in preimplantation development. Prog Growth Factor Res 1995; 6 (1) 1-24
  • 63 Pampfer S, Arceci RJ, Pollard JW. Role of colony stimulating factor-1 (CSF-1) and other lympho-hematopoietic growth factors in mouse pre-implantation development. Bioessays 1991; 13 (10) 535-540
  • 64 Robertson SA. Control of the immunological environment of the uterus. Rev Reprod 2000; 5 (3) 164-174
  • 65 Eckert LO, Moore DE, Patton DL, Agnew KJ, Eschenbach DA. Relationship of vaginal bacteria and inflammation with conception and early pregnancy loss following in-vitro fertilization. Infect Dis Obstet Gynecol 2003; 11 (1) 11-17
  • 66 Robertson SA, Mayrhofer G, Seamark RF. Uterine epithelial cells synthesize granulocyte-macrophage colony-stimulating factor and interleukin-6 in pregnant and nonpregnant mice. Biol Reprod 1992; 46 (6) 1069-1079
  • 67 Tremellen KP, Seamark RF, Robertson SA. Seminal transforming growth factor beta1 stimulates granulocyte-macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus. Biol Reprod 1998; 58 (5) 1217-1225
  • 68 Robertson SA, Mayrhofer G, Seamark RF. Ovarian steroid hormones regulate granulocyte-macrophage colony-stimulating factor synthesis by uterine epithelial cells in the mouse. Biol Reprod 1996; 54 (1) 183-196
  • 69 Herbst-Kralovetz MM, Quayle AJ, Ficarra M , et al. Quantification and comparison of toll-like receptor expression and responsiveness in primary and immortalized human female lower genital tract epithelia. Am J Reprod Immunol 2008; 59 (3) 212-224
  • 70 Soboll G, Shen L, Wira CR. Expression of Toll-like receptors (TLR) and responsiveness to TLR agonists by polarized mouse uterine epithelial cells in culture. Biol Reprod 2006; 75 (1) 131-139
  • 71 Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm 2010; 2010
  • 72 Zicari A, Centonze C, Realacci M, Buchetti B, Pietropolli A, Ticconi C. Estradiol 17-beta and progesterone modulate inducible nitric oxide synthase and high mobility group box 1 expression in human endometrium. Reprod Sci 2008; 15 (6) 559-566
  • 73 Tabibzadeh S, Broome J. Heat shock proteins in human endometrium throughout the menstrual cycle. Infect Dis Obstet Gynecol 1999; 7 (1-2) 5-9
  • 74 Friebe A, Douglas AJ, Solano E , et al. Neutralization of LPS or blockage of TLR4 signaling prevents stress-triggered fetal loss in murine pregnancy. J Mol Med (Berl) 2011; 89 (7) 689-699
  • 75 Bezirtzoglou E, Voidarou Ch, Papadaki A, Tsiotsias A, Kotsovolou O, Konstandi M. Hormone therapy alters the composition of the vaginal microflora in ovariectomized rats. Microb Ecol 2008; 55 (4) 751-759
  • 76 Kim YJ, Ku SY, Jee BC , et al. Dynamics of early estradiol production may be associated with outcomes of in vitro fertilization. Fertil Steril 2010; 94 (7) 2868-2870
  • 77 Var T, Tonguc E, Dogan M, Mollamahmutoglu L. Relationship between the oestradiol/oocyte ratio and the outcome of assisted reproductive technology cycles with gonadotropin releasing hormone agonist. Gynecol Endocrinol 2011; 27 (8) 558-561
  • 78 Giudice LC, Telles TL, Lobo S, Kao L. The molecular basis for implantation failure in endometriosis: on the road to discovery. Ann N Y Acad Sci 2002; 955: 252-264 , discussion 293–295, 396–406
  • 79 Lessey BA. Two pathways of progesterone action in the human endometrium: implications for implantation and contraception. Steroids 2003; 68 (10-13) 809-815
  • 80 Young SL, Lessey BA. Progesterone function in human endometrium: clinical perspectives. Semin Reprod Med 2010; 28 (1) 5-16
  • 81 Lessey BA, Gui Y, Apparao KB, Young SL, Mulholland J. Regulated expression of heparin-binding EGF-like growth factor (HB-EGF) in the human endometrium: a potential paracrine role during implantation. Mol Reprod Dev 2002; 62 (4) 446-455
  • 82 Aghajanova L, Hamilton A, Kwintkiewicz J, Vo KC, Giudice LC. Steroidogenic enzyme and key decidualization marker dysregulation in endometrial stromal cells from women with versus without endometriosis. Biol Reprod 2009; 80 (1) 105-114
  • 83 Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med 2007; 25 (6) 445-453
  • 84 Gellersen B, Brosens J. Cyclic AMP and progesterone receptor cross-talk in human endometrium: a decidualizing affair. J Endocrinol 2003; 178 (3) 357-372
  • 85 Bischof P. Three pregnancy proteins (PP12, PP14, and PAPP-A): their biological and clinical relevance. Am J Perinatol 1989; 6 (2) 110-116
  • 86 Rutanen EM, Koistinen R, Seppälä M, Julkunen M, Suikkari AM, Huhtala ML. Progesterone-associated proteins PP12 and PP14 in the human endometrium. J Steroid Biochem 1987; 27 (1-3) 25-31
  • 87 Julkunen M, Raikar RS, Joshi SG, Bohn H, Seppälä M. Placental protein 14 and progestagen-dependent endometrial protein are immunologically indistinguishable. Hum Reprod 1986; 1 (1) 7-8
  • 88 Julkunen M, Koistinen R, Sjöberg J, Rutanen EM, Wahlström T, Seppälä M. Secretory endometrium synthesizes placental protein 14. Endocrinology 1986; 118 (5) 1782-1786
  • 89 Rutanen EM, Koistinen R, Sjöberg J , et al. Synthesis of placental protein 12 by human endometrium. Endocrinology 1986; 118 (3) 1067-1071
  • 90 Bohn H, Kraus W. [Isolation and characterization of a new placenta specific protein (PP12) (author's transl)]. Arch Gynecol 1980; 229 (4) 279-291
  • 91 Martin KL, Barlow DH, Sargent IL. Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium. Hum Reprod 1998; 13 (6) 1645-1652
  • 92 Usadi RS, Groll JM, Lessey BA , et al. Endometrial development and function in experimentally induced luteal phase deficiency. J Clin Endocrinol Metab 2008; 93 (10) 4058-4064
  • 93 Fritz M, Adamson GD, Barnhart K , et al; Practice Committee of the American Society for Reproductive Medicine. Progesterone supplementation during the luteal phase and in early pregnancy in the treatment of infertility: an educational bulletin. Fertil Steril 2008; 89 (4) 789-792
  • 94 Daya S, Gunby JL. WITHDRAWN: Luteal phase support in assisted reproduction cycles. Cochrane Database Syst Rev 2008; (3) CD004830
  • 95 Aghajanova L, Velarde MC, Giudice LC. Altered gene expression profiling in endometrium: evidence for progesterone resistance. Semin Reprod Med 2010; 28 (1) 51-58
  • 96 Klemmt PA, Carver JG, Kennedy SH, Koninckx PR, Mardon HJ. Stromal cells from endometriotic lesions and endometrium from women with endometriosis have reduced decidualization capacity. Fertil Steril 2006; 85 (3) 564-572
  • 97 Savaris RF, Groll JM, Young SL , et al. Progesterone resistance in PCOS endometrium: a microarray analysis in clomiphene citrate-treated and artificial menstrual cycles. J Clin Endocrinol Metab 2011; 96 (6) 1737-1746
  • 98 Bruner-Tran KL, Osteen KG. Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod Toxicol 2011; 31 (3) 344-350
  • 99 Bruner-Tran KL, Ding T, Osteen KG. Dioxin and endometrial progesterone resistance. Semin Reprod Med 2010; 28 (1) 59-68
  • 100 Bruner-Tran KL, Yeaman GR, Crispens MA, Igarashi TM, Osteen KG. Dioxin may promote inflammation-related development of endometriosis. Fertil Steril 2008; 89 (5, Suppl): 1287-1298
  • 101 Nayyar T, Bruner-Tran KL, Piestrzeniewicz-Ulanska D, Osteen KG. Developmental exposure of mice to TCDD elicits a similar uterine phenotype in adult animals as observed in women with endometriosis. Reprod Toxicol 2007; 23 (3) 326-336
  • 102 Møller BR, Kristiansen FV, Thorsen P, Frost L, Mogensen SC. Sterility of the uterine cavity. Acta Obstet Gynecol Scand 1995; 74 (3) 216-219
  • 103 Cowling P, McCoy DR, Marshall RJ, Padfield CJ, Reeves DS. Bacterial colonization of the non-pregnant uterus: a study of pre-menopausal abdominal hysterectomy specimens. Eur J Clin Microbiol Infect Dis 1992; 11 (2) 204-205
  • 104 Svenstrup HF, Fedder J, Abraham-Peskir J, Birkelund S, Christiansen G. Mycoplasma genitalium attaches to human spermatozoa. Hum Reprod 2003; 18 (10) 2103-2109