Planta Med 2014; 80(02/03): 139-145
DOI: 10.1055/s-0033-1360220
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Isobolographic Analysis of the Antinociceptive Interaction between Ursolic Acid and Diclofenac or Tramadol in Mice

Myrna Déciga-Campos
1   Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D. F., México
,
Alejandra Cortés
1   Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D. F., México
2   Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, México D. F., México
,
Francisco Pellicer
2   Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, México D. F., México
,
Irene Díaz-Reval
3   Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
,
María Eva González-Trujano
2   Laboratorio de Neurofarmacología de Productos Naturales de la Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, México D. F., México
› Author Affiliations
Further Information

Publication History

received 26 March 2013
revised 22 November 2013

accepted 02 December 2013

Publication Date:
15 January 2014 (online)

Abstract

It is considered that natural products used in folk medicine can potentiate the effect of drugs. The aim of this study was to evaluate the pharmacological interaction between ursolic acid, a triterpene isolated from herbal medicines to treat pain, and the analgesics diclofenac or tramadol. Individual dose-response curves of the antinociceptive effect of these compounds were built to calculate the ED50, as well as the pharmacological interaction, by using isobolographic analysis. All treatments decreased significantly and in a dose-dependent manner the writhing behavior with ED50 values of 103.50 ± 19.66, 20.54 ± 6.05, and 9.60 ± 1.69 mg/kg, for ursolic acid, diclofenac, and tramadol, respectively. An isobolographic analysis allowed the characterization of the pharmacological interaction produced by a fixed ratio combination of 1 : 1 and 1 : 3 of equi-effective doses of these compounds. Theoretical antinociceptive ED50 values of ursolic acid–diclofenac were 62.12 ± 10.28 and 41.43 ± 6.69 mg/kg, respectively, not statistically different from those obtained experimentally (44.52 ± 5.25 and 44.89 ± 49.05 mg/kg, respectively), reporting an additive interaction. Theoretical antinociceptive ED50 values of ursolic acid–tramadol (56.56 ± 9.87 and 33.08 ± 5.07 mg/kg, respectively) were significantly lower than those observed experimentally (138.36 ± 49.05 and 67.34 ± 18.98 mg/kg, respectively) reporting antagonism in this interaction. Antinociceptive response obtained from isobolograms in the writhing test was corroborated by using formalin test in mice. Adverse effects such as gastric damage in the ursolic acid–diclofenac combination did not increase in an additive form similarly as with antinociception. Conversely, sedative response was significantly increased in the ursolic acid–tramadol combination. As observed in the formalin test, the antagonism on the antinociceptive response between ursolic acid and tramadol (1 : 1) was not reverted in the presence of the opioid antagonist naltrexone (1 mg/kg, i. p.). These results provide evidence for a differential pharmacological interaction, in which ursolic acid does not interfere with the antinociceptive effect of diclofenac but antagonizes that obtained with tramadol in an independent opioid mechanism. Therefore, medicinal plants containing abundant presence of ursolic acid may also modify efficacy in the alternative combinations for the pain therapy.

 
  • References

  • 1 Tapondjou LA, Lontsi D, Sondengam BL, Choi J, Lee KT, Jung HJ, Park HJ. In vivo antinociceptive and anti-inflammatory effect of the two triterpenes, ursolic acid and 23-hydroxyursolic acid from Cussonia bancoensis . Arch Pharmac Res 2003; 26: 143-146
  • 2 Park JH, Son KH, Kim SW, Chang HW, Bae K, Kang SS, Kim HP. Antiinflammatory activity of Synurus deltoids. Phytother Res 2004; 18: 930-933
  • 3 Kawano M, Otsuka M, Umeyama K, Yamazaki M, Shiota T, Satake M, Okuyama E. Anti-inflammatory and analgesic components from “hierba santa,” a traditional medicine in Peru. J Nat Med 2009; 63: 147-158
  • 4 Muñoz O, Christen P, Cretton S, Backhouse N, Torres V, Correa O, Costa E, Miranda H, Delporte C. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensi (Mol) Stuntz, Elaeocarpaceae. J Pharm Pharmacol 2011; 63: 849-859
  • 5 Khan S, Nisar M, Khan R, Ahmad W, Nasir F. Evaluation of chemical constituents and antinociceptive properties of Myricaria elegans Royle. Chem Biodivers 2010; 7: 2897-2900
  • 6 Rodrigues MR, Kanazawa LK, da Neves TL, da Silva CF, Horst H, Pizzolatti MG, Santos AR, Baggio CH, Werner MF. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol 2012; 31: 519-526
  • 7 Liao CR, Chang YS, Peng WH, Lai SC, Ho YL. Analgesic and anti-inflammatory activities of the methanol extract of Elaeagnus oldhamii Maxim in mice. Am J Chin Med 2012; 40: 581-597
  • 8 González-Trujano ME, Ventura-Martínez R, Chávez M, Díaz-Reval I, Pellicer F. Spasmolytic and antinociceptive activities of ursolic acid and acacetin identified in Agastache mexicana . Planta Med 2012; 78: 793-796
  • 9 Sultana N. Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J Enzyme Inhib Med Chem 2011; 26: 616-642
  • 10 Boullata J. Natural health product interactions with medication. Nutr Clin Pract 2005; 20: 33-51
  • 11 Díaz AM, Abad MJ, Fernández L, Recuero C, Villaescusa L, Silván AM, Bermejo P. In vitro anti-inflammatory activity of iridoids and triterpenoid compounds isolated from Phyllyrea latiflora L. Biol Pharm Bull 2000; 23: 1307-1313
  • 12 Baricevic D, Sosa S, Della Loggia R, Tubaro A, Simonovska B, Krasna A, Zupancic A. Topical anti-inflammatory activity of Salvia officinalis L. leaves the relevance of ursolic acid. J Ethnopharmacol 2001; 75: 125-132
  • 13 Martínez AL, González-Trujano ME, Chávez M, Pellicer F. Antinociceptive effectiveness of triterpenes from rosemary in visceral nociception. J Ethnopharmacol 2012; 142: 28-34
  • 14 González-Ramírez A, González-Trujano ME, Pellicer F, López-Muñoz FJ. Antinociceptive and anti-inflammatory activities of the Agastache mexicana extracts by using several experimental models in rodents. J Ethnopharmacol 2012; 142: 700-705
  • 15 Pinardi G, Pelissier T, Miranda HF. Interactions in the antinociceptive effect of tramadol in mice: an isobolograhic analysis. Eur J Pain 1998; 2: 343-350
  • 16 Poveda R, Planas E, Pol O, Romero A, Sánchez S, Puing MM. Interaction between metamizol and tramadol in a model of acute visceral pain in rats. Eur J Pain 2003; 7: 439-448
  • 17 Satyanarayana PS, Jain NK, Singh A, Kulkarni SK. Isobolographic analysis of interaction between cyclooxygenase inhibitors and tramadol in acetic acid-induced writhing in mice. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 641-649
  • 18 Collier HOJ, Dinneen LC, Johnson CA, Schneider C. The abdominal constriction response and suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 1968; 32: 295-310
  • 19 Goettl VM, Larson AA. An antagonist of substance P N-terminal fragments, D-substance P(1–7), reveals that both nociceptive and antinociceptive effects are induced by substance P N-terminal activity during noxious chemical stimulation. Brain Res 1998; 780: 80-85
  • 20 Gan TJ. Diclofenac: an update on its mechanism of action and safety profile. Curr Med Res Opin 2010; 26: 1715-1731
  • 21 Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet 2004; 43: 879-923
  • 22 Bailey DG, Dresser GK. Natural products and adverse drug interactions. CMAJ 2004; 170: 1531-1532
  • 23 Kim KA, Lee JS, Park HJ, Kim JW, Kim CJ, Shim IS, Kim NJ, Han SM, Lim S. Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes. Life Sci 2004; 74: 2769-2779
  • 24 Driessen B, Reimann W. Interaction of the central analgesic, tramadol with the uptake and release of 5-hydroxytryptamine in the rat brain in vitro . Br J Clin Pharmacol 1992; 105: 147-151
  • 25 Raffa RB, Friderichs E, Reimann W, Shank RP, Codd EE, Vaught JL. Opioid and non opioid components independently contribute to the mechanism of action of tramadol, an atypical opioid analgesic. J Pharmacol Exp Ther 1992; 260: 275-285
  • 26 Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16: 109-110
  • 27 Ugalde M, Reza V, González-Trujano ME, Avula B, Khan IA, Navarrete A. Isobolographic analysis of the sedative interaction between six central nervous system depressant drugs and Valeriana edulis hydroalcoholic extract in mice. J Pharm Pharmacol 2005; 57: 631-640
  • 28 González-Trujano ME, Navarrete CA, Reyes B, Hong E. Some pharmacological effects of the ethanol extract of leaves of Annona diversifolia on the central nervous system in mice. Phytoter Res 1998; 2: 600-602
  • 29 Tallarida RJ. Statistical analysis of drug combinations for synergism. Pain 1992; 49: 93-97
  • 30 Tallarida RJ. Quantitative methods for assessing drug synergism. Genes Cancer 2011; 2: 1003-1008
  • 31 Tallarida RJ, Porreca F, Cowan A. Statistical analysis of drug-drug and site-site interactions with isobolograms. Life Sci 1989; 45: 947-961
  • 32 Hunskaar S, Fasmer OB, Hole K. Formalin test in mice, a useful technique for evaluating mild analgesics. Neurosci Methods 1985; 14: 69-76