Radiologie up2date 2014; 14(01): 15-29
DOI: 10.1055/s-0033-1359241
Gerätetechniken/Neuentwicklungen/Digitale Radiologie
© Georg Thieme Verlag KG Stuttgart · New York

Suszeptibilitätsgewichtete Bildgebung in der Neuroradiologie

Susceptibility weighted imaging in neuroradiology
S. Peters
Further Information

Publication History

Publication Date:
01 March 2014 (online)

Zusammenfassung

Suszeptibilitätsgewichtete Bildgebung (SWI) ist eine Möglichkeit, hochaufgelöst und sensitiv geringe Magnetfeldinhomogenitäten nachzuweisen. Diagnostisch lässt sich dies besonders nutzen, um venöse Anomalien, Blutabbauprodukte und Verkalkungen zu visualisieren. Je nach Hersteller unterscheiden sich die kommerziellen SWI-Sequenzen in technischen Details, wobei die Ergebnisse vergleichbar scheinen. Dieser Artikel fasst die technischen Grundlagen der Sequenz zusammen und bietet einen Überblick über mögliche Anwendungsbereiche, wobei die zu beobachtenden Veränderungen von klinisch relevant bis experimentell/investigativ reichen. Bei gezielter Anwendung ist die SWI ein nützlicher Baustein im MRT-Repertoire und kann einen diagnostischen Zusatznutzen bringen, um zur richtigen Diagnose zu gelangen.

Abstract

Susceptibility weighted imaging (SWI) is able to detect small magnetic inhomogeneities in high resolution images. These can be used for diagnostic purposes to visualize venous anomalies, blood residuals and calcifications. The commercial sequences differ in technical details depending on the producer, whereas the results seem to be comparable. This article provides the technical basics and a review of possible applications. The detectable changes range from clinical relevant to experimental. Used systematically SWI is a valuable MRI module and helps to find the right diagnosis with additional information.

Kernaussagen
  • SWI-Sequenzen unterscheiden sich je nach Hersteller in technischen Details, wobei die Darstellungsergebnisse vergleichbar scheinen.

  • In der Sensitivität ist die SWI der konventionellen T2*-Bildgebung deutlich überlegen und stellt in vielen Fällen einen zusätzlichen Baustein im MRT-Repertoire dar.

  • Bei gezielter Anwendung kann die SWI einen hohen diagnostischen Zusatznutzen bringen und helfen, zur richtigen Diagnose zu gelangen.

 
  • Literatur

  • 1 Haacke EM, Mittal S, Wu Z et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 2009; 30: 19-30
  • 2 Tsuboyama T, Imaoka I, Shimono T et al. T2*-sensitized high-resolution magnetic resonance venography using 3D-PRESTO technique. Magn Reson Med Sci MRMS Off J Jpn Soc Magn Reson Med 2008; 7: 73-77
  • 3 Boeckh-Behrens T, Lutz J, Lummel N et al. Susceptibility-weighted angiography (SWAN) of cerebral veins and arteries compared to TOF-MRA. Eur J Radiol 2012; 81: 1238-1245
  • 4 Li C, Ai B, Li Y et al. Susceptibility-weighted imaging in grading brain astrocytomas. Eur J Radiol 2010; 75: e81-85
  • 5 Peters S, Knöß N, Wodarg F et al. Glioblastomas vs. lymphomas: more diagnostic certainty by using susceptibility-weighted imaging (SWI). Rofo Fortschritte 2012; 184: 713-718
  • 6 Kim HS, Jahng GH, Ryu CW et al. Added value and diagnostic performance of intratumoral susceptibility signals in the differential diagnosis of solitary enhancing brain lesions: preliminary study. AJNR Am J Neuroradiol 2009; 30: 1574-1579
  • 7 Thamburaj K, Radhakrishnan VV, Thomas B et al. Intratumoral microhemorrhages on T2*-weighted gradient-echo imaging helps differentiate vestibular schwannoma from meningioma. AJNR Am J Neuroradiol 2008; 29: 552-557
  • 8 Zeng QS, Kang X-S, Li C-F et al. Detection of hemorrhagic hypointense foci in radiation injury region using susceptibility-weighted imaging. Acta Radiol Stockh Swed 1987; 2011; 52: 115-119
  • 9 Peters S, Pahl R, Claviez A et al. Detection of irreversible changes in susceptibility-weighted images after whole-brain irradiation of children. Neuroradiology 2013; 55: 853-859
  • 10 Moen KG, Skandsen T, Folvik M et al. A longitudinal MRI study of traumatic axonal injury in patients with moderate and severe traumatic brain injury. J Neurol Neurosurg Psychiatry 2012; 83: 1193-1200
  • 11 Mittal S, Wu Z, Neelavalli J et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol 2009; 30: 232-252
  • 12 Babikian T, Freier MC, Tong KA et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury. Pediatr Neurol 2005; 33: 184-194
  • 13 Wu Z, Li S, Lei J et al. Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging. AJNR Am J Neuroradiol 2010; 31: 1302-1310
  • 14 Zaitsu Y, Terae S, Kudo K et al. Susceptibility-weighted imaging of cerebral fat embolism. J Comput Assist Tomogr 2010; 34: 107-112
  • 15 Zuccoli G, Panigrahy A, Haldipur A et al. Susceptibility weighted imaging depicts retinal hemorrhages in abusive head trauma. Neuroradiology 2013; 55: 889-893
  • 16 Charidimou A, Krishnan A, Werring DJ et al. Cerebral microbleeds: a guide to detection and clinical relevance in different disease settings. Neuroradiology 2013; 55: 655-674
  • 17 McKinney AM, Sarikaya B, Gustafson C et al. Detection of microhemorrhage in posterior reversible encephalopathy syndrome using susceptibility-weighted imaging. AJNR Am J Neuroradiol 2012; 33: 896-903
  • 18 Schrag M, McAuley G, Pomakian J et al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol (Berl) 2010; 119: 291-302
  • 19 Poels MMF, Ikram MA, van der Lugt A et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology 2012; 78: 326-333
  • 20 Kao H-W, Tsai FY, Hasso AN. Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol 2012; 22: 1397-1403
  • 21 Nighoghossian N, Hermier M, Adeleine P et al. Old microbleeds are a potential risk factor for cerebral bleeding after ischemic stroke: a gradient-echo T2*-weighted brain MRI study. Stroke J Cereb Circ 2002; 33: 735-742
  • 22 Viswanathan A, Guichard JP, Gschwendtner A et al. Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain J Neurol 2006; 129: 2375-2383
  • 23 Liem MK, Lesnik Oberstein SAJ, Haan J et al. MRI correlates of cognitive decline in CADASIL: a 7-year follow-up study. Neurology 2009; 72: 143-148
  • 24 De Champfleur NM, Langlois C, Ankenbrandt WJ et al. Magnetic resonance imaging evaluation of cerebral cavernous malformations with susceptibility-weighted imaging. Neurosurgery 2011; 68: 641-647 ; discussion 647–648
  • 25 Hu J, Yu Y, Juhasz C et al. MR susceptibility weighted imaging (SWI) complements conventional contrast enhanced T1 weighted MRI in characterizing brain abnormalities of Sturge-Weber Syndrome. J Magn Reson Imaging JMRI 2008; 28: 300-307
  • 26 Wu J, Tarabishy B, Hu J et al. Cortical calcification in Sturge-Weber Syndrome on MRI-SWI: relation to brain perfusion status and seizure severity. J Magn Reson Imaging JMRI 2011; 34: 791-798
  • 27 Kau T, Taschwer M, Deutschmann H et al. The „central vein sign“: is there a place for susceptibility weighted imaging in possible multiple sclerosis?. Eur Radiol 2013; 23: 1956-1962
  • 28 Habib CA, Liu M, Bawany N et al. Assessing abnormal iron content in the deep gray matter of patients with multiple sclerosis versus healthy controls. AJNR Am J Neuroradiol 2012; 33: 252-258
  • 29 Gupta D, Saini J, Kesavadas C et al. Utility of susceptibility-weighted MRI in differentiating Parkinson’s disease and atypical parkinsonism. Neuroradiology 2010; 52: 1087-1094
  • 30 O’Gorman RL, Shmueli K, Ashkan K et al. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol 2011; 21: 130-136
  • 31 Kallenberg K, Dehnert C, Dörfler A et al. Microhemorrhages in nonfatal high-altitude cerebral edema. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 2008; 28: 1635-1642
  • 32 Tong KA, Ashwal S, Obenaus A et al. Susceptibility-weighted MR imaging: a review of clinical applications in children. AJNR Am J Neuroradiol 2008; 29: 9-17
  • 33 Albayram S, Saip S, Hasiloglu ZI et al. Evaluation of parenchymal neuro-behçet disease by using susceptibility-weighted imaging. AJNR Am J Neuroradiol 2011; 32: 1050-1055
  • 34 Böttcher J, Sauner D, Jentsch A et al. Visualization of symmetric striopallidodentate calcinosis by using high-resolution susceptibility-weighted MR imaging. An account of the impact of different diagnostic methods of M. Fahr. Nervenarzt 2004; 75: 355-361