Fortschr Neurol Psychiatr 2014; 82(1): 9-29
DOI: 10.1055/s-0033-1355710
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Neurobiologische Grundlagen der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung

Neurobiology of Attention Deficit Hyperactivity Disorder
B. Wankerl
1   Institut für Experimentelle Psychologie, Universität Regensburg
,
J. Hauser
1   Institut für Experimentelle Psychologie, Universität Regensburg
,
E. Makulska-Gertruda
1   Institut für Experimentelle Psychologie, Universität Regensburg
,
A. Reißmann
1   Institut für Experimentelle Psychologie, Universität Regensburg
,
T. A. Sontag
1   Institut für Experimentelle Psychologie, Universität Regensburg
,
O. Tucha
2   Institut für Klinische und Entwicklungsneuropsychologie, Universität Groningen, Niederlande
,
K. W. Lange
1   Institut für Experimentelle Psychologie, Universität Regensburg
› Author Affiliations
Further Information

Publication History

Publication Date:
20 January 2014 (online)

Zusammenfassung

Bei der ADHS handelt es sich um eine multifaktoriell bedingte Störung, bei der die spezifischen neurobiologischen Ursachen bislang unbekannt sind. Die Monoamin-Defizithypothese hält eine Dysbalance von Dopamin, Noradrenalin und Serotonin für wahrscheinlich. Pathophysiologische Modellvorstellungen der ADHS postulieren dysfunktionale frontostriatale und frontozerebelläre Regelkreise, die sich durch bildgebende Befunde bestätigen lassen. Die strukturellen und funktionellen Auffälligkeiten sind bei Patienten mit ADHS jedoch bedeutend weitreichender, sodass heutzutage zahlreiche zentralnervöse Dysfunktionen das Erscheinungsbild der ADHS mitbedingen und insgesamt von einer Dysregulation funktioneller Konnektivität gesprochen werden muss. Die verfügbaren Tiermodelle der ADHS erlauben zwar, Rückschlüsse auf die Rolle einzelner Hirnstrukturen, auf die Funktion potenzieller Risikogene oder auf die pharmakologische Wirksamkeit bestimmter Medikamente zu ziehen, allerdings tragen sie bislang nicht zum besseren Verständnis ätiologischer Mechanismen bei. Bisher unternommene Versuche, konkrete Suszeptibilitätsgene mit genomweiter Signifikanz bzw. Risikoallele bestimmter genetischer Marker einwandfrei zu identifizieren, blieben bisher erfolglos. Vermehrt setzt sich die Vorstellung durch, dass die ADHS eine entwicklungsbiologische Störung darstellt, deren Verursachung allenfalls durch das Zusammenwirken multipler genetischer Variationen erklärbar ist. Angesichts des vielfältigen und heterogenen Phänotyps lassen sich etwaige Assoziationen mit den zugrunde liegenden Genotypen nur schwer abbilden. Daher empfiehlt es sich, valide (z. B. neuronale oder neuropsychologische) Endophänotypen zu definieren. Aus der neurobiologischen Forschung lassen sich gegenwärtig kaum therapeutische Implikationen ableiten.

Abstract

The origin of ADHD is multifactorial and both the aetiology and pathophysiology of ADHD are as yet incompletely understood. The monoamine deficit hypothesis of ADHD postulates a dysbalance in the interaction of the neurotransmitters dopamine, noradrenaline and serotonin. Pathophysiological mechanisms involved in ADHD include alterations in fronto-striatal circuits. The currently proposed animal models of ADHD are heterogeneous with regard to their pathophysiological alterations and their ability to mimic behavioural symptoms and to predict response to medication. Some evidence points to a genetic basis for ADHD which is likely to involve many genes of small individual effects. In summary, specific neurobiological substrates of ADHD are unknown and multiple genetic and environmental factors appear to act together to create a spectrum of neurobiological liability.

 
  • Literatur

  • 1 Posner K, Melvin GA, Murray DW et al. Clinical presentation of attention-deficit/hyperactivity disorder in preschool children: the Preschoolers with Attention-Deficit/Hyperactivity Disorder Treatment Study (PATS). J Child Adolesc Psychopharmacol 2007; 17: 547-562
  • 2 Schlack R, Holling H, Kurth BM et al. Die Prävalenz der Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS) bei Kindern und Jugendlichen in Deutschland. Erste Ergebnisse aus dem Kinder- und Jugendgesundheitssurvey (KiGGs). Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz 2007; 50: 827-835
  • 3 American Psychiatric Association (APA). Diagnostic and Statistical Manual of Mental Disorders. 5. Aufl. Washington, DC: American Psychiatric Association; 2013
  • 4 Lange KW, Reichl S, Lange KM et al. The history of attention deficit hyperactivity disorder. Atten Defic Hyperact Disord 2010; 2: 241-255
  • 5 Lange KW, Tucha L, Walitza S et al. Interaction of attention and graphomotor functions in children with attention deficit hyperactivity disorder. J Neural Transm (Suppl.) 2007; 72: 249-259
  • 6 Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med 2006; 36: 159-165
  • 7 Pliszka SR. Comorbidity of attention-deficit/hyperactivity disorder with psychiatric disorder: An overview. J Clin Psychiat 1998; 59: 50-58
  • 8 Danckaerts M, Sonuga-Barke EJS, Banaschewski T et al. The quality of life of children with attention deficit/hyperactivity disorder: a systematic review. Eur Child Adolesc Psychiatry 2010; 19: 83-105
  • 9 Gerlach M, Deckert J, Rothenberger A et al. Pathogenesis and pathophysiology of attention-deficit/hyperactivity disorder: from childhood to adulthood. J Neural Transm 2008; 115: 151-153
  • 10 Mick E, Faraone SV. Genetics of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Cl N Am 2008; 17: 261-284
  • 11 Banaschewski T, Becker K, Scherag S et al. Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur Child Adolesc Psychiatry 2010; 19: 237-257
  • 12 Bradley C. Behavior of children receiving Benzedrine. Am J Psychiatry 1937; 94: 577-585
  • 13 Bradley C. Benzedrine and dexedrine in the treatment of children’s behavior disorders. Pediatrics 1950; 5: 24-37
  • 14 Conners CK. Recent Drug Studies with hyperkinetic Children. J Learn Disabil 1971; 4: 476-483
  • 15 Denhoff E, Laufer MW, Solomons G. Hyperkinetic impulse disorder in children's behavior problems. Psychosom Med 1957; 19: 38-49
  • 16 Genro JP, Kieling C, Rohde LA et al. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother 2010; 10: 587-601
  • 17 Gonon F. The dopaminergic hypothesis of attention-deficit/hyperactivity disorder needs re-examining. Trends Neurosci 2009; 32: 2-8
  • 18 Volkow ND, Wang GJ, Fowler JS et al. Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1410-1415
  • 19 Volkow ND, Wang GJ, Fowler JS et al. Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 2002; 43: 181-187
  • 20 Volkow ND, Wang GJ, Fowler JS et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 2001; 21: U1-U5
  • 21 Grace AA. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 2000; 95 (Suppl. 02) S119-128
  • 22 Grace AA. Psychostimulant Actions on Dopamine and Limbic System Function: Relevance to the Pathophysiology and Treatment of ADHD. In: Solanto MV, Arnsten AT, Castellanos FX, , Hrsg. Stimulant Drugs and ADHD: Basic and Clinical Neuroscience. Oxford [u. a.]: Oxford University Press; 2001: 134-157
  • 23 Dresel S, Krause J, Krause KH et al. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 2000; 27: 1518-1524
  • 24 Krause KH, Dresel SH, Krause J et al. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 2000; 285: 107-110
  • 25 Ilgin N, Senol S, Gucuyener K et al. Is increased D2 receptor availability associated with response to stimulant medication in ADHD. Dev Med Child Neurol 2001; 43: 755-760
  • 26 Zimmer L. Positron emission tomography neuroimaging for a better understanding of the biology of ADHD. Neuropharmacology 2009; 57: 601-607
  • 27 Fusar-Poli P, Rubia K, Rossi G et al. Striatal Dopamine Transporter Alterations in ADHD: Pathophysiology or Adaptation to Psychostimulants? A Meta-Analysis. Am J Psychiatry 2012; 169: 264-272
  • 28 Perlov E, Philipsen A, Matthies S et al. Spectroscopic findings in attention-deficit/hyperactivity disorder: Review and meta-analysis. World J Biol Psychiatry 2009; 10: 355-365
  • 29 Kuczenski R, Segal DS. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: Comparison with amphetamine. J Neurochem 1997; 68: 2032-2037
  • 30 Arnsten AF. Stimulants: Therapeutic actions in ADHD. Neuropsychopharmacology 2006; 31: 2376-2383
  • 31 Berridge CW. Arousal- and Attention-Related Actions of the Locus-Coeruleus-Noradrenergic System: Potential Target in the Therapeutic Actions of Amphetamin-Like Stimulants. In: Solanto MV, Arnsten AT, Castellanos FX, , Hrsg. Stimulant Drugs and ADHD: Basic and Clinical Neuroscience. Oxford [u. a.]: Oxford University Press; 2001: 158-184
  • 32 Häßler F, Dück A, Reis O et al. Substanzgebundene Alternativen in der Therapie bei ADHS. Z Kinder Jugendpsychiatr Psychother 2009; 37: 13-24
  • 33 Pliszka SR. The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1385-1390
  • 34 Wilens TE. Mechanism of action of agents used in attention-deficit/hyperactivity disorder. J Clin Psychiatry 2006; 67: 32-37
  • 35 Kuczenski R, Segal DS. Exposure of adolescent rats to oral methylphenidate: Preferential effects on extracellular norepinephrine and absence of sensitization and cross-sensitization to metamphetamine. J Neurosci 2002; 22: 7264-7271
  • 36 Ratner S, Laor N, Bronstein Y et al. Six-week open-label reboxetine treatment in children and adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2005; 44: 428-433
  • 37 Oades RD. Role of the serotonin system in ADHD: treatment implications. Expert Rev Neurother 2007; 7: 1357-1374
  • 38 Oades RD, Sadile AG, Sagvolden T et al. The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles. Dev Sci 2005; 8: 122-131
  • 39 Jensen PS, Martin D, Cantwell DP. Comorbidity in ADHD: Implications for research, practice, and DSM-V. J Am Acad Child Adolesc Psychiatry 1997; 36: 1065-1079
  • 40 Mehta MA, Sahakian BL, Robbins TW. Comparative Psychopharmacology of Methylphenidate and Related Drugs in Human Volunteers, Patients with ADHD, and Experimental Animals. In: Solanto MV, Arnsten AT, Castellanos FX, Hrsg. Stimulant Drugs and ADHD: Basic and Clinical Neuroscience. Oxford [u. a.]: Oxford University Press; 2001: 303-331
  • 41 Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 1998; 94: 127-152
  • 42 Berridge CW, Devilbiss DM. Psychostimulants as Cognitive Enhancers: The Prefrontal Cortex, Catecholamines, and Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2011; 69: E101-E111
  • 43 Castellanos FX. Toward a pathophysiology of attention-deficit/hyperactivity disorder. Clin Pediatr 1997; 36: 381-393
  • 44 Levy F. The dopamine theory of attention deficit hyperactivity disorder (ADHD). Aust N Z J Psychiatry 1991; 25: 277-283
  • 45 Nigg JT, Casey BJ. An integrative theory of attention-deficit/hyperactivity disorder based on the cognitive and affective neurosciences. Dev Psychopathol 2005; 17: 785-806
  • 46 Sagvolden T, Johansen EB, Aase H et al. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci 2005; 28: 397-419
  • 47 Rubia K, Halari R, Christakou A et al. Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc Lond B Biol Sci 2009; 364: 1919-1931
  • 48 Sikstrom S, Soderlund G. Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev 2007; 114: 1047-1075
  • 49 Sonuga-Barke EJ. The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev 2003; 27: 593-604
  • 50 Tripp G, Wickens JR. Research Review: Dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD. J Child Psychol Psychiatry 2008; 49: 691-704
  • 51 Tripp G, Wickens JR. Neurobiology of ADHD. Neuropharmacology 2009; 57: 579-589
  • 52 Sonuga-Barke E, Bitsakou P, Thompson M. Beyond the dual pathway model: evidence for the dissociation of timing, inhibitory, and delay-related impairments in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 345-355
  • 53 Sonuga-Barke EJ. Psychological heterogeneity in AD/HD-a dual pathway model of behaviour and cognition. Behav Brain Res 2002; 130: 29-36
  • 54 Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nat Rev Neurosci 2002; 3: 617-628
  • 55 Luman M, Oosterlaan J, Sergeant JA. The impact of reinforcement contingencies on AD/HD: a review and theoretical appraisal. Clin Psychol Rev 2005; 25: 183-213
  • 56 Martinussen R, Hayden J, Hogg-Johnson S et al. A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2005; 44: 377-384
  • 57 Willcutt EG, Doyle AE, Nigg JT et al. Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biol Psychiatry 2005; 57: 1336-1346
  • 58 Alexander GE, Delong MR, Strick PL. Parallel Organization of Functionally Segregated Circuits Linking Basal Ganglia and Cortex. Annu Rev Neurosci 1986; 9: 357-381
  • 59 Castellanos FX, Sonuga-Barke EJS, Milham MP et al. Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 2006; 10: 117-123
  • 60 Zelazo PD, Müller U. Executive Function in Typical and Atypical Development. In: Goswami UC, Hrsg The Wiley-Blackwell Handbook of Childhood Cognitive Development. 2nd. ed. Malden, MA: Wiley-Blackwell; 2010: 574-603
  • 61 Strick PL, Dum RP, Fiez JA. Cerebellum and Nonmotor Function. Annu Rev Neurosci 2009; 32: 413-434
  • 62 Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry 2011; 69: 1178-1184
  • 63 Hart H, Radua J, Mataix-Cols D et al. Meta-analysis of fMRI studies of timing in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobehav Rev 2012; 36: 2248-2256
  • 64 Feldman RS, Meyer JS, Quenzer LF. Principles of neuropsychopharmacology. Sunderland, Mass.: Sinauer Associates; 1997
  • 65 Hurley MJ, Mash DC, Jenner P. Markers for dopaminergic neurotransmission in the cerebellum in normal individuals and patients with Parkinson’s disease examined by RT-PCR. Eur J Neurosci 2003; 18: 2668-2672
  • 66 Melchitzky DS, Lewis DA. Tyrosine hydroxylase- and dopamine transporter-immunoreactive axons in the primate cerebellum – Evidence for a lobular- and laminar-specific dopamine innervation. Neuropsychopharmacology 2000; 22: 466-472
  • 67 Berridge CW, Waterhouse BD. The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 2003; 42: 33-84
  • 68 Arnsten AF. Modulation of prefrontal cortical-striatal circuits: relevance to therapeutic treatments for Tourette syndrome and attention-deficit hyperactivity disorder. Adv Neurol 2001; 85: 333-341
  • 69 Pattij T, Vanderschuren LJ. The neuropharmacology of impulsive behaviour. Trends Pharmacol Sci 2008; 29: 192-199
  • 70 Schmeichel BE, Zemlan FP, Berridge CW. A selective dopamine reuptake inhibitor improves prefrontal cortex-dependent cognitive function: Potential relevance to attention deficit hyperactivity disorder. Neuropharmacology 2013; 64: 321-328
  • 71 Swanson CJ, Perry KW, Koch-Krueger S et al. Effect of the attention deficit/hyperactivity disorder drug atomoxetine on extracellular concentrations of norepinephrine and dopamine in several brain regions of the rat. Neuropharmacology 2006; 50: 755-760
  • 72 Bymaster FP, Katner JS, Nelson DL et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in Attention Deficit/Hyperactivity Disorder. Neuropsychopharmacology 2002; 27: 699-711
  • 73 Oades RD. The Role of Serotonin in Attention-Deficit Hyperactivity Disorder. In: Müller CP, Jacobs BL, Hrsg. Handbook of the Behavioral Neurobiology of Serotonin. 1st. ed. Oxford: Elsevier; 2008: 565-584
  • 74 Willner P. Behavioural Models in Psychopharmacology. In: Willner P, , Hrsg Behavioural Models in Psychopharmacology: Theoretical, Industrial, and Clinical Perspective. Cambridge: University Press; 1991: 3-18
  • 75 Sontag TA, Hauser J, Tucha O et al. Effects of DSP4 and methylphenidate on spatial memory performance in rats. Atten Def Hyperact Dis 2011; 3: 351-358
  • 76 Sontag TA, Hauser J, Kaunzinger I et al. Effects of the noradrenergic neurotoxin DSP4 on spatial memory in the rat. J Neural Transm 2008; 115: 299-303
  • 77 Hauser J, Sontag TA, Tucha O et al. The effects of the neurotoxin DSP4 on spatial learning and memory in Wistar rats. Atten Def Hyperact Dis 2012; 4: 93-99
  • 78 Davids E, Zhang K, Tarazi FI et al. Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev 2003; 42: 1-21
  • 79 Sontag TA, Tucha O, Walitza S et al. Animal models of attention deficit/hyperactivity disorder (ADHD): a critical review. Atten Def Hyperact Dis 2010; 2: 1-20
  • 80 Meneses A, Perez-Garcia G, Ponce-Lopez T et al. Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev Neurosci 2011; 22: 365-371
  • 81 Kostrzewa RM, Kostrzewa JP, Kostrzewa RA et al. Pharmacological models of ADHD. J Neural Transm 2008; 115: 287-298
  • 82 Sagvolden T, Russell VA, Aase H et al. Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1239-1247
  • 83 Russell VA, Sagvolden T, Johansen EB. Animal models of attention-deficit hyperactivity disorder. Behav Brain Funct 2005; 1: 9
  • 84 van der Kooij MA, Glennon JC. Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder. Neurosci Biobehav Rev 2007; 31: 597-618
  • 85 Moser MB, Moser EI, Wultz B et al. Component analyses differentiate between exploratory behaviour of spontaneously hypertensive rats and Wistar Kyoto rats in a two-compartment free-exploration open field. Scand J Psychol 1988; 29: 200-206
  • 86 Sagvolden T, Aase H, Zeiner P et al. Altered reinforcement mechanisms in attention-deficit/hyperactivity disorder. Behav Brain Res 1998; 94: 61-71
  • 87 Sagvolden T, Metzger MA, Schiorbeck HK et al. The Spontaneously Hypertensive Rat (Shr) as an Animal-Model of Childhood Hyperactivity (Adhd) – Changed Reactivity to Reinforcers and to Psychomotor Stimulants. Behav Neural Biol 1992; 58: 103-112
  • 88 Sagvolden T. Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 2000; 24: 31-39
  • 89 Deutch AY, Roth RH. The determinants of stress-induced activation of the prefrontal cortical dopamine system. Prog Brain Res 1990; 85: 367-402
  • 90 Jones SR, Garris PA, Kilts CD et al. Comparison of Dopamine Uptake in the Basolateral Amygdaloid Nucleus, Caudate-Putamen, and Nucleus-Accumbens of the Rat. J Neurochem 1995; 64: 2581-2589
  • 91 Myers MM, Whittemore SR, Hendley ED. Changes in catecholamine neuronal uptake and receptor binding in the brains of spontaneously hypertensive rats (SHR). Brain Res 1981; 220: 325-338
  • 92 Russell V, Devilliers A, Sagvolden T et al. Altered Dopaminergic Function in the Prefrontal Cortex, Nucleus-Accumbens and Caudate-Putamen of an Animal-Model of Attention-Deficit Hyperactivity Disorder – the Spontaneously Hypertensive Rat. Brain Res 1995; 676: 343-351
  • 93 Carey MP, Diewald LM, Esposito FJ et al. Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behav Brain Res 1998; 94: 173-185
  • 94 Li Q, Lu G, Antonio GE et al. The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem Int 2007; 50: 848-857
  • 95 Mill J, Sagvolden T, Asherson P. Sequence analysis of Drd2, Drd4, and Dat1 in SHR and WKY rat strains. Behav Brain Funct 2005; 1: 24
  • 96 de Villiers AS, Russell VA, Sagvolden T et al. Alpha 2-adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for attention-deficit hyperactivity disorder. Neurochem Res 1995; 20: 427-433
  • 97 Reja V, Goodchild AK, Pilowsky PM. Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension 2002; 40: 342-347
  • 98 Russell VA, Wiggins TM. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab Brain Dis 2000; 15: 297-304
  • 99 Tsuda K, Tsuda S, Masuyama Y et al. Norepinephrine Release and Neuropeptide-Y in Medulla-Oblongata of Spontaneously Hypertensive Rats. Hypertension 1990; 15: 784-790
  • 100 Boix F, Qiao SW, Kolpus T et al. Chronic L-deprenyl treatment alters brain monoamine levels and reduces impulsiveness in an animal model of Attention-Deficit/Hyperactivity Disorder. Behav Brain Res 1998; 94: 153-162
  • 101 Myers MM, Musty RE, Hendley ED. Attenuation of hyperactivity in the spontaneously hypertensive rat by amphetamine. Behav Neural Biol 1982; 34: 42-54
  • 102 Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J 1963; 27: 282-293
  • 103 McCarty R, Kirby RF. Spontaneous Hypertension and Open-Field Behavior. Behav Neural Biol 1982; 34: 450-452
  • 104 Pare WP. Stress ulcer and open-field behavior of spontaneously hypertensive, normotensive, and Wistar rats. Pavlov J Biol Sci 1989; 24: 54-57
  • 105 Sagvolden T, Pettersen MB, Larsen MC. Spontaneously hypertensive rats (SHR) as a putative animal model of childhood hyperkinesis: SHR behavior compared to four other rat strains. Physiol Behav 1993; 54: 1047-1055
  • 106 Schaefer CF, Brackett DJ, Gunn CG et al. Behavioral hyperreactivity in the spontaneously hypertensive rat compared to its normotensive progenitor. Pavlov J Biol Sci 1978; 13: 211-216
  • 107 Lahmame A, delArco C, Pazos A et al. Are Wistar-Kyoto rats a genetic animal model of depression resistant to antidepressants?. Eur J Pharmacol 1997; 337: 115-123
  • 108 Malkesman O, Weller A. Two different putative genetic animal models of childhood depression-a review. Prog Neurobiol 2009; 88: 153-169
  • 109 Overstreet DH. Modeling depression in animal models. Methods Mol Biol 2012; 829: 125-144
  • 110 Gainetdinov RR, Wetsel WC, Jones SR et al. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 1999; 283: 397-401
  • 111 Jones SR, Gainetdinov RR, Jaber M et al. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA 1998; 95: 4029-4034
  • 112 Gainetdinov RR, Jones SR, Fumagalli F et al. Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Rev 1998; 26: 148-153
  • 113 Jaber M, Dumartin B, Sagne C et al. Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter. Eu J Neurosci 1999; 11: 3499-3511
  • 114 Gainetdinov RR, Caron MC. Genetics of childhood disorders: XXIV. ADHD, part 8: Hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatry 2001; 40: 380-382
  • 115 Hawi Z, Dring M, Kirley A et al. Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT(1B) receptor gene in 273 nuclear families from a multi-centre sample. Mol Psychiatry 2002; 7: 718-725
  • 116 Winstanley CA, Dalley JW, Theobald DE et al. Global 5-HT depletion attenuates the ability of amphetamine to decrease impulsive choice on a delay-discounting task in rats. Psychopharmacology 2003; 170: 320-331
  • 117 Russell VA. Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods 2007; 161: 185-198
  • 118 Franke B, Neale BM, Faraone SV. Genome-wide association studies in ADHD. Hum Genet 2009; 126: 13-50
  • 119 Hess EJ, Jinnah HA, Kozak CA et al. Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. J Neurosci 1992; 12: 2865-2874
  • 120 Hess EJ, Collins KA, Wilson MC. Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. J Neurosci 1996; 16: 3104-3111
  • 121 Barr CL, Feng Y, Wigg K et al. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000; 5: 405-409
  • 122 Thapar A, Holmes J, Poulton K et al. Genetic basis of attention deficit and hyperactivity. Brit J Psychiatry 1999; 174: 105-111
  • 123 Faraone SV, Perlis RH, Doyle AE et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005; 57: 1313-1323
  • 124 Faraone SV, Mick E. Molecular Genetics of Attention Deficit Hyperactivity Disorder. Psychiatr Clin N Am 2010; 33: 159-180
  • 125 Elia J, Sackett J, Turner T et al. Attention-Deficit/Hyperactivity Disorder Genomics: Update for Clinicians. Curr Psychiatry Rep 2012; 14: 579-589
  • 126 Goodman R, Stevenson J. A twin study of hyperactivity-II. The aetiological role of genes, family relationships and perinatal adversity. J Child Psychol Psychiatry 1989; 30: 691-709
  • 127 Sprich S, Biederman J, Crawford MH et al. Adoptive and biological families of children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 2000; 39: 1432-1437
  • 128 Stergiakouli E, Thapar A. Fitting the pieces together: current research on the genetic basis of attention-deficit/hyperactivity disorder (ADHD). Neuropsychiatr Dis Treat 2010; 6: 551-560
  • 129 Amin N, Aulchenko YS, Dekker MC et al. Suggestive linkage of ADHD to chromosome 18q22 in a young genetically isolated Dutch population. Eur J Hum Genet 2009; 17: 958-966
  • 130 Arcos-Burgos M, Castellanos FX, Pineda D et al. Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am J Hum Genet 2004; 75: 998-1014
  • 131 Asherson P, Zhou K, Anney RJL et al. A high-density SNP linkage scan with 142 combined subtype ADHD sib pairs identifies linkage regions on chromosomes 9 and 16. Mol Psychiatry 2008; 13: 514-521
  • 132 Bakker SC, van der Meulen EM, Buitelaar JK et al. A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: Suggestive evidence for linkage on chromosomes 7p and 15q. Am J Hum Genet 2003; 72: 1251-1260
  • 133 Faraone SV, Doyle AE, Lasky-Su J et al. Linkage Analysis of Attention Deficit Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1387-1391
  • 134 Fisher SE, Francks C, McCracken JT et al. A genomewide scan for loci involved in attention-deficit hyperactivity disorder. Am J Hum Genet 2002; 70: 1183-1196
  • 135 Hebebrand J, Dempfle A, Saar K et al. A genome-wide scan for attention-deficit/hyperactivity disorder in 155 German sib-pairs. Mol Psychiatry 2006; 11: 196-205
  • 136 Ogdie MN, Macphie IL, Minassian SL et al. A genomewide scan for attention-deficit/hyperactivity disorder in an extended sample: Suggestive linkage on 17p11. Am J Hum Genet 2003; 72: 1268-1279
  • 137 Romanos M, Freitag C, Jacob C et al. Genome-wide linkage analysis of ADHD using high-density SNP arrays: novel loci at 5q13.1 and 14q12. Mol Psychiatry 2008; 13: 522-530
  • 138 Rommelse NNJ, Arias-Vasquez A, Altink ME et al. Neuropsychological endophenotype approach to genome-wide linkage analysis identifies susceptibility loci for ADHD on 2q21.1 and 13q12.11. Am J Hum Genet 2008; 83: 99-105
  • 139 Saviouk V, Hottenga JJ, Slagboom EP et al. ADHD in Dutch Adults: Heritability and Linkage Study. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 352-362
  • 140 Vegt R, Bertoli-Avella AM, Tulen JHM et al. Genome-wide linkage analysis in a Dutch multigenerational family with attention deficit hyperactivity disorder. Eur J Hum Genet 2010; 18: 206-211
  • 141 Zhou KX, Dempfle A, Arcos-Burgos M et al. Meta-Analysis of Genome-Wide Linkage Scans of Attention Deficit Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1392-1398
  • 142 Coghill D, Banaschewski T. The genetics of attention-deficit/hyperactivity disorder. Expert Rev Neurother 2009; 9: 1547-1565
  • 143 Thapar A, Cooper M, Eyre O et al. Practitioner Review: What have we learnt about the causes of ADHD?. J Child Psychol Psychiatry 2013; 54: 3-16
  • 144 Spencer TJ, Biederman J, Madras BK et al. In vivo neuroreceptor Imaging in attention-deficit/hyperactivity disorder: A focus on the dopamine transporter. Biol Psychiatry 2005; 57: 1293-1300
  • 145 Zhang LY, Chang SH, Li Z et al. ADHDgene: a genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res 2012; 40: D1003-D1009
  • 146 Brookes K, Xu X, Chen W et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 2006; 11: 934-953
  • 147 Guan L, Wang B, Chen Y et al. A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry 2009; 14: 546-554
  • 148 DiMaio S, Grizenko N, Joober R. Dopamine genes and attention-deficit hyperactivity disorder: a review. J Psychiatry Neurosci 2003; 28: 27-38
  • 149 Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 2009; 126: 51-90
  • 150 Bobb AJ, Castellanos FX, Addington AM et al. Molecular genetic studies of ADHD: 1991 to 2004. Am J Med Genet B Neuropsychiatr Genet 2005; 132B: 109-125
  • 151 Chang SH, Zhang WN, Gao L et al. Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources. Protein Cell 2012; 3: 526-534
  • 152 Hinney A, Scherag A, Jarick I et al. Genome-wide association study in German patients with attention deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 888-897
  • 153 Lasky-Su J, Neale BM, Franke B et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1345-1354
  • 154 Lesch K-P, Timmesfeld N, Renner TJ et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 2008; 115: 1573-1585
  • 155 Mick E, Todorov A, Smalley S et al. Family-Based Genome-Wide Association Scan of Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 898-905
  • 156 Neale BM, Medland SE, Ripke S et al. Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 884-897
  • 157 Neale BM, Medland S, Ripke S et al. Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 906-920
  • 158 Neale BM, Lasky-Su J, Anney R et al. Genome-Wide Association Scan of Attention Deficit Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2008; 147B: 1337-1344
  • 159 Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 2008; 32: 227-234
  • 160 Pe'er I, Yelensky R, Altshuler D et al. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 2008; 32: 381-385
  • 161 Kim YJ, Zerwas S, Trace SE et al. Schizophrenia Genetics: Where Next?. Schizophr Bull 2011; 37: 456-463
  • 162 Zeggini E, Scott LJ, Saxena R et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40: 638-645
  • 163 Poelmans G, Pauls DL, Buitelaar JK et al. Integrated Genome-Wide Association Study Findings: Identification of a Neurodevelopmental Network for Attention Deficit Hyperactivity Disorder. Am J Psychiatry 2011; 168: 365-377
  • 164 Rucker JJH, McGuffin P. Genomic structural variation in psychiatric disorders. Dev Psychopathol 2012; 24: 1335-1344
  • 165 Renner TJ, Gerlach M, Romanos M et al. Neurobiologie des Aufmerksamkeitsdefizit-/Hyperaktivitätssyndroms. Nervenarzt 2008; 79: 771-781
  • 166 Elia J, Glessner JT, Wang K et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nat Genet 2011; 44: 78-84
  • 167 Elia J, Gai X, Xie HM et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 2010; 15: 1122-1122
  • 168 Lesch KP, Selch S, Renner TJ et al. Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree. Mol Psychiatry 2011; 16: 491-503
  • 169 Stergiakouli E, Hamshere M, Holmans P et al. Investigating the Contribution of Common Genetic Variants to the Risk and Pathogenesis of ADHD. Am J Psychiatry 2012; 169: 186-194
  • 170 Williams NM, Zaharieva I, Martin A et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 2010; 376: 1401-1408
  • 171 Williams NM, Franke B, Mick E et al. Genome-Wide Analysis of Copy Number Variants in Attention Deficit Hyperactivity Disorder: The Role of Rare Variants and Duplications at 15q13. 3. Am J Psychiatry 2012; 169: 195-204
  • 172 Grayton HM, Fernandes C, Rujescu D et al. Copy number variations in neurodevelopmental disorders. Prog Neurobiol 2012; 99: 81-91
  • 173 Thapar A, Cooper M, Jefferies R et al. What causes attention deficit hyperactivity disorder?. Arch Dis Child 2012; 97: 260-265
  • 174 Waldman ID, Gizer IR. The genetics of attention deficit hyperactivity disorder. Clin Psychol Rev 2006; 26: 396-432
  • 175 Millichap JG. Etiologic classification of attention-deficit/hyperactivity disorder. Pediatrics 2008; 121: e358-365
  • 176 Linnet KM, Dalsgaard S, Obel C et al. Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am J Psychiatry 2003; 160: 1028-1040
  • 177 Langley K, Rice F, van den Bree MBM et al. Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Minerva Pediatr 2005; 57: 359-371
  • 178 Bhutta AT, Cleves MA, Casey PH et al. Cognitive and behavioral outcomes of school-aged children who were born preterm – A meta-analysis. JAMA 2002; 288: 728-737
  • 179 Chu SM, Tsai MH, Hwang FM et al. The relationship between attention deficit hyperactivity disorder and premature infants in Taiwanese: a case control study. BMC Psychiatry 2012; 12: 85
  • 180 Burger PH, Goecke TW, Fasching PA et al. Einfluss des mütterlichen während der Schwangerschaft auf die Entwicklung von ADHS beim Kind. Fortschr Neurol Psychiatr 2011; 79: 500-506
  • 181 Polanska K, Jurewicz J, Hanke W. Exposure to environmental and lifestyle factors and attention-deficit / hyperactivity disorder in children – A review of epidemiological studies. Int J Occup Med Environ Health 2012; 25: 330-355
  • 182 Nigg JT. ADHD, lead exposure and prevention: how much lead or how much evidence is needed?. Expert Rev Neurother 2008; 8: 519-521
  • 183 Liu J, Schelar E. Pesticide exposure and child neurodevelopment: summary and implications. Workplace Health Saf 2012; 60: 235-242
  • 184 Bouchard MF, Bellinger DC, Wright RO et al. Attention-Deficit/Hyperactivity Disorder and Urinary Metabolites of Organophosphate Pesticides. Pediatrics 2010; 125: E1270-E1277
  • 185 Eubig PA, Aguiar A, Schantz SL. Lead and PCBs as Risk Factors for Attention Deficit/Hyperactivity Disorder. Environ Health Perspect 2010; 118: 1654-1667
  • 186 Sagiv SK, Thurston SW, Bellinger DC et al. Prenatal Organochlorine Exposure and Behaviors Associated With Attention Deficit Hyperactivity Disorder in School-Aged Children. Am J Epidemiol 2010; 171: 593-601
  • 187 Arnold LE, DiSilvestro RA. Zinc in attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2005; 15: 619-627
  • 188 Kozielec T, Starobrat-Hermelin B. Assessment of magnesium levels in children with attention deficit hyperactivity disorder (ADHD). Magnes Res 1997; 10: 143-148
  • 189 Spahis S, Vanasse M, Belanger SA et al. Lipid profile, fatty acid composition and pro- and anti-oxidant status in pediatric patients with attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids 2008; 79: 47-53
  • 190 Nigg JT, Lewis K, Edinger T et al. Meta-Analysis of Attention-Deficit/Hyperactivity Disorder or Attention-Deficit/Hyperactivity Disorder Symptoms, Restriction Diet, and Synthetic Food Color Additives. J Am Acad Child Adolesc Psychiatry 2012; 51: 86-97
  • 191 Millichap JG, Yee MM. The diet factor in attention-deficit/hyperactivity disorder. Pediatrics 2012; 129: 330-337
  • 192 Ficks CA, Waldman ID. Gene-Environment Interactions in Attention-Deficit/Hyperactivity Disorder. Curr Psychiatry Rep 2009; 11: 387-392
  • 193 Banerjee T, Middleton F, Faraone SV. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr 2007; 96: 1269-1274
  • 194 Rutter M, Beckett C, Castle J et al. Effects of profound early institutional deprivation: An overview of findings from a UK longitudinal study of Romanian adoptees. Eur J Dev Psychol 2007; 4: 332-350
  • 195 Langley K, Fowler T, Ford T et al. Adolescent clinical outcomes for young people with attention-deficit hyperactivity disorder. Br J Psychiatry 2010; 196: 235-240
  • 196 Lahey BB, D'Onofrio BM, Waldman ID. Using epidemiologic methods to test hypotheses regarding causal influences on child and adolescent mental disorders. J Child Psychol Psychiatry 2009; 50: 53-62
  • 197 Froehlich TE, Anixt JS, Loe IM et al. Update on Environmental Risk Factors for Attention-Deficit/Hyperactivity Disorder. Curr Psychiatry Rep 2011; 13: 333-344
  • 198 Nigg JT. What causes ADHD? Understanding what goes wrong and why. New York: Guilford Press; 2006
  • 199 Cortese S. The neurobiology and genetics of Attention-Deficit/Hyperactivity Disorder (ADHD): What every clinician should know. Eur J Paediatr Neurol 2012; 16: 422-433
  • 200 Nigg J, Nikolas M, Burt SA. Measured Gene-by-Environment Interaction in Relation to Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 863-873
  • 201 Thapar A, Harold G, Rice F et al. The contribution of gene-environment interaction to psychopathology. Dev Psychopathol 2007; 19: 989-1004
  • 202 Purcell S. Variance components models for gene-environment interaction in twin analysis. Twin Res 2002; 5: 554-571
  • 203 Caspi A, McClay J, Moffitt TE et al. Role of genotype in the cycle of violence in maltreated children. Science 2002; 297: 851-854
  • 204 Pennington BF, McGrath LM, Rosenberg J et al. Gene × Environment Interactions in Reading Disability and Attention-Deficit/Hyperactivity Disorder. Dev Psychol 2009; 45: 77-89
  • 205 Henikoff S, Matzke MA. Exploring and explaining epigenetic effects. Trends Genet 1997; 13: 293-295
  • 206 Groom A, Elliott HR, Embleton ND et al. Epigenetics and child health: basic principles. Arch Dis Child 2011; 96: 863-869
  • 207 Mill J, Petronis A. Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry 2008; 49: 1020-1030
  • 208 Steinmann E, Siniatchkin M, Petermann F et al. ADHS im Kindesalter: ätiologische und therapeutische Ansätze mit dem Schwerpunkt der Bildgebung. Z Neuropsychol 2012; 23: 193-203
  • 209 Krain AL, Castellanos FX. Brain development and ADHD. Clin Psychol Rev 2006; 26: 433-444
  • 210 Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci 2012; 16: 17-26
  • 211 Cherkasova MV, Hechtman L. Neuroimaging in Attention-Deficit Hyperactivity Disorder: Beyond the Frontostriatal Circuitry. Can J Psychiatry 2009; 54: 651-664
  • 212 Ellison-Wright I, Ellison-Wright Z, Bullmore E. Structural brain change in Attention Deficit Hyperactivity Disorder identified by meta-analysis. BMC Psychiatry 2008; 8: 51
  • 213 Kobel M, Bechtel N, Specht K et al. Structural and functional imaging approaches in attention deficit/hyperactivity disorder: Does the temporal lobe play a key role?. Psychiatry Res 2010; 183: 230-236
  • 214 Giedd JN, Rapoport JL. Structural MRI of Pediatric Brain Development: What Have We Learned and Where Are We Going?. Neuron 2010; 67: 728-734
  • 215 Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand 2012; 125: 114-126
  • 216 Nakao T, Radua J, Rubia K et al. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry 2011; 168: 1154-1163
  • 217 Fjell AM, Westlye LT, Amlien I et al. High Consistency of Regional Cortical Thinning in Aging across Multiple Samples. Cereb Cortex 2009; 19: 2001-2012
  • 218 Salat DH, Buckner RL, Snyder AZ et al. Thinning of the cerebral cortex in aging. Cereb Cortex 2004; 14: 721-730
  • 219 Castellanos FX, Lee PP, Sharp W et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA 2002; 288: 1740-1748
  • 220 Makris N, Biederman J, Valera EM et al. Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex 2007; 17: 1364-1375
  • 221 Narr KL, Woods RP, Lin J et al. Widespread Cortical Thinning Is a Robust Anatomical Marker for Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 2009; 48: 1014-1022
  • 222 Qiu MG, Ye Z, Li QY et al. Changes of Brain Structure and Function in ADHD Children. Brain Topogr 2011; 24: 243-252
  • 223 Shaw P, Lerch J, Greenstein D et al. Longitudinal mapping of cortical thickness and clinical outcome in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2006; 63: 540-549
  • 224 Almeida Montes LG, Prado Alcantara H, Martinez Garcia RB et al. Brain Cortical Thickness in ADHD: Age, Sex, and Clinical Correlations. J Atten Disord DOI DOI: 10.1177/1087054711434351.
  • 225 Shaw P, Eckstrand K, Sharp W et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA 2007; 104: 19649-19654
  • 226 Shaw P, Gilliam M, Liverpool M et al. Cortical Development in Typically Developing Children With Symptoms of Hyperactivity and Impulsivity: Support for a Dimensional View of Attention Deficit Hyperactivity Disorder. Am J Psychiatry 2011; 168: 143-151
  • 227 Cortese S, Kelly C, Chabernaud C et al. Toward Systems Neuroscience of ADHD: A Meta-Analysis of 55 fMRI Studies. Am J Psychiatry 2012; 169: 1038-1055
  • 228 van Ewijk H, Heslenfeld DJ, Zwiers MP et al. Diffusion tensor imaging in attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2012; 36: 1093-1106
  • 229 Silk TJ, Vance A, Rinehart N et al. White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Hum Brain Mapp 2009; 30: 2757-2765
  • 230 Tamm L, Barnea-Goraly N, Reiss AL. Diffusion tensor imaging reveals white matter abnormalities in Attention-Deficit/Hyperactivity Disorder. Psychiatry Res 2012; 202: 150-154
  • 231 Bush G, Valera EM, Seidman LJ. Functional neuroimaging of attention-deficit/hyperactivity disorder: A review and suggested future directions. Biol Psychiatry 2005; 57: 1273-1284
  • 232 Dickstein SG, Bannon K, Castellanos FX et al. The neural correlates of attention deficit hyperactivity disorder: an ALE meta-analysis. J Child Psychol Psychiatry 2006; 47: 1051-1062
  • 233 Vloet TD, Neufang S, Herpertz-Dahlmann B et al. Bildgebungsbefunde bei Kindern und Jugendlichen mit ADHS, Tic-Störungen und Zwangserkrankungen. Z Kinder Jugendpsychiatr Psychother 2006; 34: 343-355
  • 234 Makris N, Biederman J, Monuteaux MC et al. Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Dev Neurosci 2009; 31: 36-49
  • 235 Yeo BTT, Krienen FM, Sepulcre J et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106: 1125-1165
  • 236 Bush G. Cingulate, Frontal, and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2011; 69: 1160-1167
  • 237 Sonuga-Barke EJ, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 2007; 31: 977-986
  • 238 Thome J, Ehlis AC, Fallgatter AJ et al. Biomarkers for attention-deficit/hyperactivity disorder (ADHD). A consensus report of the WFSBP task force on biological markers and the World Federation of ADHD. World J Biol Psychiatry 2012; 13: 379-400
  • 239 Castellanos FX, Kelly C, Milham MP. The Restless Brain: Attention-Deficit Hyperactivity Disorder, Resting-State Functional Connectivity, and Intrasubject Variability. Can J Psychiatry 2009; 54: 665-672
  • 240 Buckner RL, Vincent JL. Unrest at rest: Default activity and spontaneous network correlations. Neuroimage 2007; 37: 1091-1096
  • 241 Damoiseaux JS, Rombouts SA, Barkhof F et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 2006; 103: 13848-13853
  • 242 Fox MD, Snyder AZ, Vincent JL et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 2005; 102: 9673-9678
  • 243 Cao XH, Cao QJ, Long XY et al. Abnormal resting-state functional connectivity patterns of the putamen in medication-naive children with attention deficit hyperactivity disorder. Brain Res 2009; 1303: 195-206
  • 244 Zang YF, He Y, Zhu CZ et al. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 2007; 29: 83-91
  • 245 Tian LX, Jiang TZ, Liang M et al. Enhanced resting-state brain activities in ADHD patients: A fMRI study. Brain Dev 2008; 30: 342-348
  • 246 Monastra VJ. Quantitative electroencephalography and attention-deficit/hyperactivity disorder: implications for clinical practice. Curr Psychiatry Rep 2008; 10: 432-438
  • 247 Boutros N, Fraenkel L, Feingold A. A four-step approach for developing diagnostic tests in psychiatry: EEG in ADHD as a test case. J Neuropsychiatry Clin Neurosci 2005; 17: 455-464
  • 248 Lazzaro I, Gordon E, Li W et al. Simultaneous EEG and EDA measures in adolescent attention deficit hyperactivity disorder. Int J Psychophysiol 1999; 34: 123-134
  • 249 Snyder SM, Hall JR. A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. J Clin Neurophysiol 2006; 23: 440-455
  • 250 Bresnahan SM, Barry RJ. Specificity of quantitative EEG analysis in adults with attention deficit hyperactivity disorder. Psychiatry Res 2002; 112: 133-144
  • 251 Coutin-Churchman P, Anez Y, Uzcategui M et al. Quantitative spectral analysis of EEG in psychiatry revisited: drawing signs out of numbers in a clinical setting. Clin Neurophysiol 2003; 114: 2294-2306
  • 252 Mann CA, Lubar JF, Zimmerman AW et al. Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: controlled study with clinical implications. Pediatr Neurol 1992; 8: 30-36
  • 253 Matsuura M, Okubo Y, Toru M et al. A Cross-National EEg Study of Children with Emotional and Behavioral-Problems – a Who Collaborative Study in the Western Pacific Region. Biol Psychiatry 1993; 34: 59-65
  • 254 Loo SK, Makeig S. Clinical utility of EEG in attention-deficit/hyperactivity disorder: a research update. Neurotherapeutics 2012; 9: 569-587
  • 255 Ogrim G, Kropotov J, Hestad K. The quantitative EEG theta/beta ratio in attention deficit/hyperactivity disorder and normal controls: Sensitivity, specificity, and behavioral correlates. Psychiatry Res 2012; 198: 482-488
  • 256 Arns M, Drinkenburg W, Leon Kenemans J. The effects of QEEG-informed neurofeedback in ADHD: an open-label pilot study. Appl Psychophysiol Biofeedback 2012; 37: 171-180
  • 257 Chabot RJ, di Michele F, Prichep L. The role of quantitative electroencephalography in child and adolescent psychiatric disorders. Child Adolesc Psychiatr Clin N Am 2005; 14: 21-53
  • 258 Monastra VJ. Electroencephalographic biofeedback (neurotherapy) as a treatment for attention deficit hyperactivity disorder: rationale and empirical foundation. Child Adolesc Psychiatr Clin N Am 2005; 14: 55-82
  • 259 Arns M, Gunkelman J, Breteler M et al. EEG phenotypes predict treatment outcome to stimulants in children with ADHD. J Integr Neurosci 2008; 7: 421-438
  • 260 Clarke AR, Barry RJ, McCarthy R et al. EEG evidence for a new conceptualisation of attention deficit hyperactivity disorder. Clin Neurophysiol 2002; 113: 1036-1044
  • 261 Arns M, Conners CK, Kraemer HC. A Decade of EEG Theta/Beta Ratio Research in ADHD: A Meta-Analysis. J Atten Disord 2013; 17: 374-383
  • 262 Chabot RJ, Serfontein G. Quantitative electroencephalographic profiles of children with attention deficit disorder. Biol Psychiatry 1996; 40: 951-963
  • 263 Clarke AR, Barry RJ, Dupuy FE et al. Behavioural differences between EEG-defined subgroups of children with Attention-Deficit/Hyperactivity Disorder. Clin Neurophysiol 2011; 122: 1333-1341
  • 264 Loo SK, Hale ST, Hanada G et al. Familial clustering and DRD4 effects on electroencephalogram measures in multiplex families with attention deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 368-377
  • 265 Johnstone SJ, Barry RJ, Clarke AR. Ten years on: A follow-up review of ERP research in attention-deficit/hyperactivity disorder. Clin Neurophysiol 2013; 124: 644-657
  • 266 Barry RJ, Johnstone SJ, Clarke AR. A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clin Neurophysiol 2003; 114: 184-198
  • 267 Van De Voorde S, Roeyers H, Wiersema JR. Error monitoring in children with ADHD or reading disorder: An event-related potential study. Biol Psychol 2010; 84: 176-185
  • 268 Burgio-Murphy A, Klorman R, Shaywitz SE et al. Error-related event-related potentials in children with attention-deficit hyperactivity disorder, oppositional defiant disorder, reading disorder, and math disorder. Biol Psychol 2007; 75: 75-86
  • 269 McLoughlin G, Albrecht B, Banaschewski T et al. Electrophysiological evidence for abnormal preparatory states and inhibitory processing in adult ADHD. Behav Brain Funct 2010; 6: 66
  • 270 Szuromi B, Czobor P, Komlosi S et al. P300 deficits in adults with attention deficit hyperactivity disorder: a meta-analysis. Psychol Med 2011; 41: 1529-1538
  • 271 Clarke AR, Barry RJ, McCarthy R et al. Effects of stimulant medications on the EEG of girls with Attention-Deficit/Hyperactivity Disorder. Clin Neurophysiol 2007; 118: 2700-2708
  • 272 Pliszka SR, Liotti M, Bailey BY et al. Electrophysiological effects of stimulant treatment on inhibitory control in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 2007; 17: 356-366
  • 273 Gevensleben H, Moll G, Heinrich H. Neurofeedback-Training bei Kindern mit Aufmerksamkeitsdefizit-/Hyperaktivitätsstörung (ADHS). Effekte auf Verhaltens- und neurophysiologischer Ebene. Z Kinder Jugendpsychiatr Psychother 2010; 38: 409-420
  • 274 Birbaumer N, Elbert T, Canavan AGM et al. Slow Potentials of the Cerebral-Cortex and Behavior. Physiol Rev 1990; 70: 1-41
  • 275 Banaschewski T, Brandeis D. Annotation: What electrical brain activity tells us about brain function that other techniques cannot tell us – a child psychiatric perspective. J Child Psychol Psychiatry 2007; 48: 415-435
  • 276 Doehnert M, Brandeis D, Straub M et al. Slow cortical potential neurofeedback in attention deficit hyperactivity disorder: is there neurophysiological evidence for specific effects?. J Neural Transm 2008; 115: 1445-1456
  • 277 Sergeant J. The cognitive-energetic model: an empirical approach to Attention-Deficit Hyperactivity Disorder. Neurosci Biobehav Rev 2000; 24: 7-12
  • 278 Rothenberger A. Brain oscillations forever – neurophysiology in future research of child psychiatric problems. J Child Psychol Psychiatry 2009; 50: 79-86
  • 279 Heinrich H, Gevensleben H, Strehl U. Annotation: Neurofeedback – train your brain to train behaviour. J Child Psychol Psychiatry 2007; 48: 3-16
  • 280 Leins U, Hinterberger T, Kaller S et al. Neurofeedback der langsamen kortikalen Potenziale und der Theta/Beta-Aktivität für Kinder mit einer ADHS: ein kontrollierter Vergleich. Prax Kinderpsychol Kinderpsychiatr 2006; 55: 384-407
  • 281 Arns M, de Ridder S, Strehl U et al. Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin EEG Neurosci 2009; 40: 180-189
  • 282 Sonuga-Barke EJ, Brandeis D, Cortese S et al. Nonpharmacological Interventions for ADHD: Systematic Review and Meta-Analyses of Randomized Controlled Trials of Dietary and Psychological Treatments. Am J Psychiatry 2013; 170: 275-289
  • 283 Gevensleben H, Rothenberger A, Moll GH et al. Neurofeedback in children with ADHD: validation and challenges. Expert Rev Neurother 2012; 12: 447-460
  • 284 Lofthouse N, Arnold LE, Hurt E. Current status of neurofeedback for attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 2012; 14: 536-542
  • 285 Moriyama TS, Polanczyk G, Caye A et al. Evidence-Based Information on the Clinical Use of Neurofeedback for ADHD. Neurotherapeutics 2012; 9: 588-598
  • 286 Steinhausen HC. The heterogeneity of causes and courses of attention-deficit/hyperactivity disorder. Acta Psychiatr Scand 2009; 120: 392-399
  • 287 Furman L. What is attention-deficit hyperactivity disorder (ADHD)?. J Child Neurol 2005; 20: 994-1002
  • 288 Gonon F, Bezard E, Boraud T. What Should Be Said to the Lay Public Regarding ADHD Etiology. Am J Med Genet B Neuropsychiatr Genet 2011; 156B: 989-991
  • 289 Sonuga-Barke EJ. Editorial: “It’s the environment stupid!” On epigenetics, programming and plasticity in child mental health. J Child Psychol Psychiatry 2010; 51: 113-115
  • 290 Purper-Ouakil D, Ramoz N, Lepagnol-Bestel AM et al. Neurobiology of attention deficit/hyperactivity disorder. Pediatr Res 2011; 69: 69R-76R
  • 291 Durston S. Imaging genetics in ADHD. Neuroimage 2010; 53: 832-838
  • 292 Durston S, de Zeeuw P, Staal WG. Imaging genetics in ADHD: a focus on cognitive control. Neurosci Biobehav Rev 2009; 33: 674-689
  • 293 Del CampoN, Muller U, Sahakian BJ. Neural and behavioral endophenotypes in ADHD. Curr Top Behav Neurosci 2012; 11: 65-91
  • 294 Taylor E, Dopfner M, Sergeant J et al. European clinical guidelines for hyperkinetic disorder – first upgrade. Eur Child Adolesc Psychiatry 2004; 13: 7-30
  • 295 Martin N, McDougall M, Hay DA. What are the key directions in the genetics of attention deficit hyperactivity disorder?. Curr Opin Psychiatry 2008; 21: 356-361
  • 296 Zeni CP, Guimaraes AP, Polanczyk GV et al. No significant association between response to methylphenidate and genes of the dopaminergic and serotonergic systems in a sample of Brazilian children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2007; 144B: 391-394