Semin Neurol 2012; 32(04): 432-453
DOI: 10.1055/s-0032-1331814
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Guidelines for Acquiring and Reporting Clinical Neurospectroscopy

Alexander Lin
1   Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
,
Thao Tran
2   MRS Unit, Huntington Medical Research Institutes, Pasadena, California
,
Stefan Bluml
3   Department of Radiology, Children's Hospital Boston, Los Angeles California
,
Sai Merugumala
1   Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
,
Hui-Jun Liao
1   Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
,
Brian D. Ross
1   Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
2   MRS Unit, Huntington Medical Research Institutes, Pasadena, California
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2013 (online)

Abstract

Since the advent of CPT 76390 in 1998, magnetic resonance spectroscopy (MRS) of the brain, or neurospectroscopy, has moved from the realm of academic research into that of the clinical world. All major MR manufacturers have aided in the endeavor by automating neurospectroscopy so that it no longer requires an MR physicist and is a push-button technique that can be run by technologists just as a typical MR sequence. Thousands of studies have demonstrated the clinical efficacy of neurospectroscopy, and there are many medical reviews of how this technique can be applied across a wide range of neurologic disorders. However, few studies address the practical issue of acquiring and reporting neurospectroscopy in a clinical practice. Based on clinical experience at three different sites across the country and nearly two decades of applications training for technologists and radiologists at international clinical neurospectroscopy courses, the guidelines described in this article demonstrate proven protocols for clinical diagnosis and outline the strategies involved in acquiring, interpreting, and reporting clinical neurospectroscopy successfully. A standard operating procedure used across the three sites is described and high reproducibility across different platforms is shown.

 
  • References

  • 1 Lin AP, Tran TT, Ross BD. Impact of evidence-based medicine on magnetic resonance spectroscopy. NMR Biomed 2006; 19 (4) 476-483
  • 2 Ross B, Bluml S. Magnetic resonance spectroscopy of the human brain. Anat Rec 2001; 265 (2) 54-84
  • 3 Tran T, Ross B, Lin A. Magnetic resonance spectroscopy in neurological diagnosis. Neurol Clin 2009; 27 (1) 21-60, xiii xiii
  • 4 Xu V, Chan H, Lin AP , et al. MR spectroscopy in diagnosis and neurological decision-making. Semin Neurol 2008; 28 (4) 407-422
  • 5 Zhu H, Barker PB. MR spectroscopy and spectroscopic imaging of the brain. Methods Mol Biol 2011; 711: 203-226
  • 6 Alger JR. Quantitative proton magnetic resonance spectroscopy and spectroscopic imaging of the brain: a didactic review. Top Magn Reson Imaging 2010; 21 (2) 115-128
  • 7 Drost DJ, Riddle WR, Clarke GD. AAPM MR Task Group #9. Proton magnetic resonance spectroscopy in the brain: report of AAPM MR Task Group #9. Med Phys 2002; 29 (9) 2177-2197
  • 8 Law M. MR spectroscopy of brain tumors. Top Magn Reson Imaging 2004; 15 (5) 291-313
  • 9 Castillo M, Kwock L, Scatliff J, Mukherji SK. Proton MR spectroscopy in neoplastic and non-neoplastic brain disorders. Magn Reson Imaging Clin N Am 1998; 6 (1) 1-20
  • 10 Gillies RJ, Morse DL. In vivo magnetic resonance spectroscopy in cancer. Annu Rev Biomed Eng 2005; 7: 287-326
  • 11 McIntyre DJ, Madhu B, Lee SH, Griffiths JR. Magnetic resonance spectroscopy of cancer metabolism and response to therapy. Radiat Res 2012; 177 (4) 398-435
  • 12 Sibtain NA, Howe FA, Saunders DE. The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol 2007; 62 (2) 109-119
  • 13 Negendank W. Studies of human tumors by MRS: a review. NMR Biomed 1992; 5 (5) 303-324
  • 14 Howe FA, Opstad KS. 1H MR spectroscopy of brain tumours and masses. NMR Biomed 2003; 16 (3) 123-131
  • 15 Hollingworth W, Medina LS, Lenkinski RE , et al. A systematic literature review of magnetic resonance spectroscopy for the characterization of brain tumors. AJNR Am J Neuroradiol 2006; 27 (7) 1404-1411
  • 16 Cecil KM, Lenkinski RE. Proton MR spectroscopy in inflammatory and infectious brain disorders. Neuroimaging Clin N Am 1998; 8 (4) 863-880
  • 17 Chang L, Ernst T. MR spectroscopy and diffusion-weighted MR imaging in focal brain lesions in AIDS. Neuroimaging Clin N Am 1997; 7 (3) 409-426
  • 18 Kapsalaki EZ, Gotsis ED, Fountas KN. The role of proton magnetic resonance spectroscopy in the diagnosis and categorization of cerebral abscesses. Neurosurg Focus 2008; 24 (6) E7
  • 19 Kuzniecky R. Clinical applications of MR spectroscopy in epilepsy. Neuroimaging Clin N Am 2004; 14 (3) 507-516
  • 20 Ranjeva JP, Confort-Gouny S, Le Fur Y, Cozzone PJ. Magnetic resonance spectroscopy of brain in epilepsy. Childs Nerv Syst 2000; 16 (4) 235-241
  • 21 Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Tan J. In vivo MR spectroscopy of human dementia. Neuroimaging Clin N Am 1998; 8 (4) 809-822
  • 22 Kantarci K. 1H magnetic resonance spectroscopy in dementia. Br J Radiol 2007; 80 (Spec No 2) S146-S152
  • 23 Firbank MJ, Harrison RM, O'Brien JT. A comprehensive review of proton magnetic resonance spectroscopy studies in dementia and Parkinson's disease. Dement Geriatr Cogn Disord 2002; 14 (2) 64-76
  • 24 Grover VP, Dresner MA, Forton DM , et al. Current and future applications of magnetic resonance imaging and spectroscopy of the brain in hepatic encephalopathy. World J Gastroenterol 2006; 12 (19) 2969-2978
  • 25 Ross BD, Danielsen ER, Blüml S. Proton magnetic resonance spectroscopy: the new gold standard for diagnosis of clinical and subclinical hepatic encephalopathy?. Dig Dis 1996; 14 (Suppl. 01) 30-39
  • 26 Cecil KM. MR spectroscopy of metabolic disorders. Neuroimaging Clin N Am 2006; 16 (1) 87-116, viii viii
  • 27 Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81 (2) 89-131
  • 28 Saneto RP, Friedman SD, Shaw DW. Neuroimaging of mitochondrial disease. Mitochondrion 2008; 8 (5–6) 396-413
  • 29 Schiffmann R, van der Knaap MS. The latest on leukodystrophies. Curr Opin Neurol 2004; 17 (2) 187-192
  • 30 Cady EB. Magnetic resonance spectroscopy in neonatal hypoxic-ischaemic insults. Childs Nerv Syst 2001; 17 (3) 145-149
  • 31 Saunders DE. MR spectroscopy in stroke. Br Med Bull 2000; 56 (2) 334-345
  • 32 Ricci Jr PE. Proton MR spectroscopy in ischemic stroke and other vascular disorders. Neuroimaging Clin N Am 1998; 8 (4) 881-900
  • 33 De Stefano N, Filippi M. MR spectroscopy in multiple sclerosis. J Neuroimaging 2007; 17 (Suppl. 01) 31S-35S
  • 34 Narayana PA. Magnetic resonance spectroscopy in the monitoring of multiple sclerosis. J Neuroimaging 2005; 15 (4, Suppl) 46S-57S
  • 35 Arnold DL, De Stefano N, Narayanan S, Matthews PM. Proton MR spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 2000; 10 (4) 789-798 , ix–x
  • 36 Lin AP, Liao HJ, Merugumala SK, Prabhu SP, Meehan III WP, Ross BD. Metabolic imaging of mild traumatic brain injury. Brain Imaging Behav 2012; 6 (2) 208-223
  • 37 Marino S, Ciurleo R, Bramanti P, Federico A, De Stefano N. 1H-MR spectroscopy in traumatic brain injury. Neurocrit Care 2011; 14 (1) 127-133
  • 38 Garnett MR, Cadoux-Hudson TA, Styles P. How useful is magnetic resonance imaging in predicting severity and outcome in traumatic brain injury?. Curr Opin Neurol 2001; 14 (6) 753-757
  • 39 Brooks WM, Friedman SD, Gasparovic C. Magnetic resonance spectroscopy in traumatic brain injury. J Head Trauma Rehabil 2001; 16 (2) 149-164
  • 40 Panigrahy A, Blüml S. Advances in magnetic resonance imaging of the injured neonatal brain. Pediatr Ann 2008; 37 (6) 395-402
  • 41 Panigrahy A, Borzage M, Blüml S. Basic principles and concepts underlying recent advances in magnetic resonance imaging of the developing brain. Semin Perinatol 2010; 34 (1) 3-19
  • 42 Hoon Jr AH, Melhem ER. Neuroimaging: applications in disorders of early brain development. J Dev Behav Pediatr 2000; 21 (4) 291-302
  • 43 Kułak W, Sobaniec W. Molecular mechanisms of brain plasticity: neurophysiologic and neuroimaging studies in the developing patients. Rocz Akad Med Bialymst 2004; 49: 227-236
  • 44 Martin WRW. MR spectroscopy in neurodegenerative disease. Mol Imaging Biol 2007; 9 (4) 196-203
  • 45 Pioro EP. Proton magnetic resonance spectroscopy (1H-MRS) in ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1 (Suppl. 02) S7-S16
  • 46 Harris RE, Clauw DJ. Imaging central neurochemical alterations in chronic pain with proton magnetic resonance spectroscopy. Neurosci Lett 2012; 520 (2) 192-196
  • 47 Mountford CE, Stanwell P, Lin A, Ramadan S, Ross B. Neurospectroscopy: the past, present and future. Chem Rev 2010; 110 (5) 3060-3086
  • 48 Broniscer A, Gajjar A, Bhargava R , et al. Brain stem involvement in children with neurofibromatosis type 1: role of magnetic resonance imaging and spectroscopy in the distinction from diffuse pontine glioma. Neurosurgery 1997; 40 (2) 331-337 , discussion 337–338
  • 49 Castillo M, Kwock L, Courvoisie HE, Hooper SR, Greenwood RS. Proton MR spectroscopy in psychiatric and neurodevelopmental childhood disorders: early experience. Neuroimaging Clin N Am 1998; 8 (4) 901-912
  • 50 Lin DD, Barker PB. Neuroimaging of phakomatoses. Semin Pediatr Neurol 2006; 13 (1) 48-62
  • 51 Arora A, Neema M, Stankiewicz J , et al. Neuroimaging of toxic and metabolic disorders. Semin Neurol 2008; 28 (4) 495-510
  • 52 Licata SC, Renshaw PF. Neurochemistry of drug action: insights from proton magnetic resonance spectroscopic imaging and their relevance to addiction. Ann N Y Acad Sci 2010; 1187: 148-171
  • 53 Meyerhoff DJ, Durazzo TC. Proton magnetic resonance spectroscopy in alcohol use disorders: a potential new endophenotype?. Alcohol Clin Exp Res 2008; 32 (7) 1146-1158
  • 54 Panigrahy A, Blüml S. Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy. Top Magn Reson Imaging 2007; 18 (1) 3-29
  • 55 Hunter JV, Wang ZJ. MR spectroscopy in pediatric neuroradiology. Magn Reson Imaging Clin N Am 2001; 9 (1) 165-189, ix ix
  • 56 Nucci-da-Silva MP, Amaro Jr E. A systematic review of magnetic resonance imaging and spectroscopy in brain injury after drowning. Brain Inj 2009; 23 (9) 707-714
  • 57 Gómez-Ansón B, MacManus DG, Parker GJ , et al. In vivo 1H-magnetic resonance spectroscopy of the spinal cord in humans. Neuroradiology 2000; 42 (7) 515-517
  • 58 Lammertse D, Dungan D, Dreisbach J , et al; National Institute on Disability and Rehabilitation. Neuroimaging in traumatic spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med 2007; 30 (3) 205-214
  • 59 Caverzasi E, Pichiecchio A, Calligaro A , et al. Complications in major depressive disorder therapy: a review of magnetic resonance spectroscopy studies. Funct Neurol 2008; 23 (3) 129-132
  • 60 Karl A, Werner A. The use of proton magnetic resonance spectroscopy in PTSD research—meta-analyses of findings and methodological review. Neurosci Biobehav Rev 2010; 34 (1) 7-22
  • 61 Keshavan MS, Stanley JA, Pettegrew JW. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings—part II. Biol Psychiatry 2000; 48 (5) 369-380
  • 62 Stanley JA, Pettegrew JW, Keshavan MS. Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings—part I. Biol Psychiatry 2000; 48 (5) 357-368
  • 63 Sundgren PC. MR spectroscopy in radiation injury. AJNR Am J Neuroradiol 2009; 30 (8) 1469-1476
  • 64 Nelson SJ. Imaging of brain tumors after therapy. Neuroimaging Clin N Am 1999; 9 (4) 801-819
  • 65 Payne GS, Leach MO. Applications of magnetic resonance spectroscopy in radiotherapy treatment planning. Br J Radiol 2006; 79 (Spec No 1) S16-S26
  • 66 Lai PH, Hsu SS, Lo YK, Ding SW. Role of diffusion-weighted imaging and proton MR spectroscopy in distinguishing between pyogenic brain abscess and necrotic brain tumor. Acta Neurol Taiwan 2004; 13 (3) 107-113
  • 67 Peterson PL, Axford JS, Isenberg D. Imaging in CNS lupus. Best Pract Res Clin Rheumatol 2005; 19 (5) 727-739
  • 68 Tanabe J, Weiner MW. MRI-MRS of the brain in systemic lupus erythematosus. How do we use it to understand causes of clinical signs?. Ann N Y Acad Sci 1997; 823: 169-184
  • 69 Caverzasi E, Pichiecchio A, Poloni GU , et al. Magnetic resonance spectroscopy in the evaluation of treatment efficacy in unipolar major depressive disorder: a review of the literature. Funct Neurol 2012; 27 (1) 13-22
  • 70 Gonzalez-Toledo E, Kelley RE, Minagar A. Role of magnetic resonance spectroscopy in diagnosis and management of multiple sclerosis. Neurol Res 2006; 28 (3) 280-283
  • 71 Lin A, Ross BD, Harris K, Wong W. Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx 2005; 2 (2) 197-214
  • 72 Moats RA, Watson L, Shonk T , et al. Added value of automated clinical proton MR spectroscopy of the brain. J Comput Assist Tomogr 1995; 19 (3) 480-491
  • 73 Webb PG, Sailasuta N, Kohler SJ, Raidy T, Moats RA, Hurd RE. Automated single-voxel proton MRS: technical development and multisite verification. Magn Reson Med 1994; 31 (4) 365-373
  • 74 ACR–ASNR Practice Guideline for the Performance and Interpretation of Magnetic . Resonance Spectroscopy of the Central Nervous System. 2008. Available at: http://www.acr.org/∼/media/B0AF516E53234DA399EF305525504249.pdf . Accessed October 10, 2012
  • 75 Rosen Y, Lenkinski RE. Recent advances in magnetic resonance neurospectroscopy. Neurotherapeutics 2007; 4 (3) 330-345
  • 76 Ashwal S, Holshouser BA, Shu SK , et al. Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatr Neurol 2000; 23 (2) 114-125
  • 77 Camicioli RM, Korzan JR, Foster SL , et al. Posterior cingulate metabolic changes occur in Parkinson's disease patients without dementia. Neurosci Lett 2004; 354 (3) 177-180
  • 78 Gropman A. Brain imaging in urea cycle disorders. Mol Genet Metab 2010; 100 (Suppl. 01) S20-S30
  • 79 Shimizu E, Hashimoto K, Ochi S , et al. Posterior cingulate gyrus metabolic changes in chronic schizophrenia with generalized cognitive deficits. J Psychiatr Res 2007; 41 (1–2) 49-56
  • 80 Hsu YY, Chen MC, Lim KE, Chang C. Reproducibility of hippocampal single-voxel proton MR spectroscopy and chemical shift imaging. AJR Am J Roentgenol 2001; 176 (2) 529-536
  • 81 Kreis R. Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 2004; 17 (6) 361-381
  • 82 Kallenberg K, Bock HC, Helms G , et al. Untreated glioblastoma multiforme: increased myo-inositol and glutamine levels in the contralateral cerebral hemisphere at proton MR spectroscopy. Radiology 2009; 253 (3) 805-812
  • 83 Sundgren PC, Nagesh V, Elias A , et al. Metabolic alterations: a biomarker for radiation-induced normal brain injury-an MR spectroscopy study. J Magn Reson Imaging 2009; 29 (2) 291-297
  • 84 Estève F, Rubin C, Grand S, Kolodié H, Le Bas JF. Transient metabolic changes observed with proton MR spectroscopy in normal human brain after radiation therapy. Int J Radiat Oncol Biol Phys 1998; 40 (2) 279-286
  • 85 Sijens PE, Oudkerk M, van Dijk P, Levendag PC, Vecht CJ. 1H MR spectroscopy monitoring of changes in choline peak area and line shape after Gd-contrast administration. Magn Reson Imaging 1998; 16 (10) 1273-1280
  • 86 Sijens PE, van den Bent MJ, Nowak PJ, van Dijk P, Oudkerk M. 1H chemical shift imaging reveals loss of brain tumor choline signal after administration of Gd-contrast. Magn Reson Med 1997; 37 (2) 222-225
  • 87 Smith JK, Kwock L, Castillo M. Effects of contrast material on single-volume proton MR spectroscopy. AJNR Am J Neuroradiol 2000; 21 (6) 1084-1089
  • 88 Lima EC, Otaduy MC, Tsunemi M , et al. The effect of paramagnetic contrast in choline peak in patients with glioblastoma multiforme might not be significant. AJNR Am J Neuroradiol 2012;
  • 89 Murphy PS, Dzik-Jurasz AS, Leach MO, Rowland IJ. The effect of Gd-DTPA on T(1)-weighted choline signal in human brain tumours. Magn Reson Imaging 2002; 20 (1) 127-130
  • 90 Lin AP, Ross BD. Short-echo time proton MR spectroscopy in the presence of gadolinium. J Comput Assist Tomogr 2001; 25 (5) 705-712
  • 91 Murphy PS, Leach MO, Rowland IJ. The effects of paramagnetic contrast agents on metabolite protons in aqueous solution. Phys Med Biol 2002; 47 (6) N53-N59
  • 92 Candiota AP, Majós C, Julià-Sapé M , et al. Non-invasive grading of astrocytic tumours from the relative contents of myo-inositol and glycine measured by in vivo MRS. JBR-BTR 2011; 94 (6) 319-329
  • 93 Kim JH, Chang KH, Na DG , et al. 3T 1H-MR spectroscopy in grading of cerebral gliomas: comparison of short and intermediate echo time sequences. AJNR Am J Neuroradiol 2006; 27 (7) 1412-1418
  • 94 Galanaud D, Chinot O, Nicoli F , et al. Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma. J Neurosurg 2003; 98 (2) 269-276
  • 95 Panigrahy A, Krieger MD, Gonzalez-Gomez I , et al. Quantitative short echo time 1H-MR spectroscopy of untreated pediatric brain tumors: preoperative diagnosis and characterization. AJNR Am J Neuroradiol 2006; 27 (3) 560-572
  • 96 Inglese M, Spindler M, Babb JS, Sunenshine P, Law M, Gonen O. Field, coil, and echo-time influence on sensitivity and reproducibility of brain proton MR spectroscopy. AJNR Am J Neuroradiol 2006; 27 (3) 684-688
  • 97 Provencher SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30 (6) 672-679
  • 98 Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D. Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 2001; 31 (4) 269-286
  • 99 Delikatny EJ, Chawla S, Leung DJ, Poptani H. MR-visible lipids and the tumor microenvironment. NMR Biomed 2011; 24 (6) 592-611
  • 100 Haseler LJ, Arcinue E, Danielsen ER, Bluml S, Ross BD. Evidence from proton magnetic resonance spectroscopy for a metabolic cascade of neuronal damage in shaken baby syndrome. Pediatrics 1997; 99 (1) 4-14
  • 101 Howe FA, Barton SJ, Cudlip SA , et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2003; 49 (2) 223-232
  • 102 Harris K, Lin A, Bhattacharya P, Tran T, Wong W, Ross B. Regulation of NAA-synthesis in the human brain in vivo: Canavan's disease, Alzheimer's disease and schizophrenia. Adv Exp Med Biol 2006; 576: 263-273 , discussion 361–363
  • 103 Ross BD. Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; myo-inositol and related metabolites. NMR Biomed 1991; 4 (2) 59-63
  • 104 Stöckler S, Holzbach U, Hanefeld F , et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 1994; 36 (3) 409-413
  • 105 Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer 2011; 11 (12) 835-848
  • 106 Ross BD, Bluml S, Cowan R, Danielsen E, Farrow N, Gruetter R. In vivo magnetic resonance spectroscopy of human brain: the biophysical basis of dementia. Biophys Chem 1997; 68 (1–3) 161-172
  • 107 Pérez-Ruiz A, Julià-Sapé M, Mercadal G, Olier I, Majós C, Arús C. The INTERPRET decision-support system version 3.0 for evaluation of magnetic resonance spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics 2010; 11: 581
  • 108 Srinivasan R, Vigneron D, Sailasuta N, Hurd R, Nelson SJ. A comparative study of myo-inositol quantification using LCmodel at 1.5 T and 3.0 T with 3 D 1H proton spectroscopic imaging of the human brain. Magn Reson Imaging 2004; 22 (4) 523-528
  • 109 Cigna Medical Coverage Policy no.0244. 2010. Available at: http://www.cigna.com/customer_care/healthcare_professional/coverage_positions/medical/mm_0244_coveragepositioncriteria_magnetic_resonance_spectroscopy.pdf . Accessed October 1, 2012
  • 110 Anthem Medical Policy RAD. 00022. 2012. Available at: http://www.anthem.com/medicalpolicies/policies/mp_pw_a053262.htm . Accessed October 1, 2012
  • 111 Blue Cross Blue Shield of Delaware Medical Policy 6.01.34. 2012. Available at: http://www.bcbsde.com/ProviderPolicies/public_site/6.01.34_Magnetic_Resonance_Spectroscopy.htm . Accessed October 1, 2012
  • 112 Blue Cross Blue Shield Blue Care Network Medical Policy Michigan 110111.MXD. 2011. Available at: http://www.bcbsm.com/mprApp/MedicalPolicyDocument?fileId=2036662 . Accessed October 1, 2012
  • 113 Excellus Policy Number 6.01.03. 2011. Available at: http://www.excellusbcbs.com/wps/wcm/connect/90e97c8044fba9ed9be4fbef58edd5a7/mp+mrs+tac+11.pdf?MOD=AJPERES . Accessed October 1, 2012
  • 114 Highmark West Virginia Medical Policy X-50. 2011. Available at: http://www.highmarkbcbswv.com/medpolicy/X-50-006.html . Accessed October 1, 2012
  • 115 Lifewise Medical Policy 6.01.514. 2012. Available at: http://www.lifewisewa.com/lwwa/groups/public/documents/medicalpolicy/cmi_041957.htm . Accessed October 1, 2012
  • 116 Medical Fee Schedule OWCP. 2010. Available at: http://www.dol.gov/owcp/regs/feeschedule/fee/fee10/PublicUseFileDirectory2010.htm . Accessed October 1, 2012
  • 117 Lin A, Clements V, Tran T, Ross B. Reimbursement for Magnetic Resonance Spectroscopy. In: Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine. Berkeley, CA: International Society for Magnetic Resonance in Medicine; 2009: 2509
  • 118 Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Making 1991; 11 (2) 88-94