Semin Musculoskelet Radiol 2012; 16(05): 419-430
DOI: 10.1055/s-0032-1329895
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

MRI of Osteoarthritis: The Challenges of Definition and Quantification

Daichi Hayashi
1   Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
,
Ali Guermazi
1   Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
2   Department of Musculoskeletal Imaging, Boston Medical Center, Boston, Massachusetts
,
Frank W. Roemer
1   Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
3   Department of Radiology, Klinikum Augsburg, Augsburg, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
04 December 2012 (online)

Abstract

The ability of MRI to visualize the joint as a “whole organ” and to directly and three-dimensionally assess cartilage morphology and composition has given it a crucial role in discovering the natural history of osteoarthritis (OA). Morphological analysis can be semiquantitative or quantitative. Compositional analysis such as delayed gadolinium-enhanced MRI of cartilage and T2 mapping allows quantitative evaluation of tissue ultrastructure and can detect premorphological changes of cartilage and other tissues. Contrast-enhanced MRI can accurately assess the true extent of synovial inflammation. Most MRI-based studies so far have focused on knee OA, but with the availability of new semiquantitative scoring systems for hand and hip OA, studies of these joints have begun to appear. Because of the technical complexity of MRI and ever increasing number of new and sophisticated imaging sequences and protocols, the specific MRI technique in any OA study needs to be carefully tailored to the aims of the study.

 
  • References

  • 1 Hunter DJ, Zhang W, Conaghan PG , et al. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage 2011; 19 (5) 557-588
  • 2 Hunter DJ, Zhang W, Conaghan PG , et al. Responsiveness and reliability of MRI in knee osteoarthritis: a meta-analysis of published evidence. Osteoarthritis Cartilage 2011; 19 (5) 589-605
  • 3 Hayashi D, Roemer FW, Guermazi A. Osteoarthritis year 2011 in review: imaging in OA—a radiologists' perspective. Osteoarthritis Cartilage 2012; 20 (3) 207-214
  • 4 Altman R, Asch E, Bloch D , et al; Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Arthritis Rheum 1986; 29 (8) 1039-1049
  • 5 Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957; 16 (4) 494-502
  • 6 Guermazi A, Hunter DJ, Roemer FW. Plain radiography and magnetic resonance imaging diagnostics in osteoarthritis: validated staging and scoring. J Bone Joint Surg Am 2009; 91 (Suppl. 01) 54-62
  • 7 Crema MD, Roemer FW, Marra MD , et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (1) 37-61
  • 8 Roemer FW, Zhang Y, Niu J , et al; Multicenter Osteoarthritis Study Investigators. Tibiofemoral joint osteoarthritis: risk factors for MR-depicted fast cartilage loss over a 30-month period in the multicenter osteoarthritis study. Radiology 2009; 252 (3) 772-780
  • 9 Englund M, Guermazi A, Roemer FW , et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: The Multicenter Osteoarthritis Study. Arthritis Rheum 2009; 60 (3) 831-839
  • 10 De Smet AA, Norris MA, Yandow DR, Graf BK, Keene JS. Diagnosis of meniscal tears of the knee with MR imaging: effect of observer variation and sample size on sensitivity and specificity. AJR Am J Roentgenol 1993; 160 (3) 555-559
  • 11 Hernández-Molina G, Guermazi A, Niu J , et al. Central bone marrow lesions in symptomatic knee osteoarthritis and their relationship to anterior cruciate ligament tears and cartilage loss. Arthritis Rheum 2008; 58 (1) 130-136
  • 12 Amin S, Guermazi A, Lavalley MP , et al. Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthritis Cartilage 2008; 16 (8) 897-902
  • 13 Roemer FW, Kassim Javaid M, Guermazi A , et al. Anatomical distribution of synovitis in knee osteoarthritis and its association with joint effusion assessed on non-enhanced and contrast-enhanced MRI. Osteoarthritis Cartilage 2010; 18 (10) 1269-1274
  • 14 Guermazi A, Roemer FW, Hayashi D , et al. Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis 2011; 70 (5) 805-811
  • 15 Roemer FW, Frobell R, Hunter DJ , et al. MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthritis Cartilage 2009; 17 (9) 1115-1131
  • 16 Felson DT, McLaughlin S, Goggins J , et al. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med 2003; 139 (5 Pt 1) 330-336
  • 17 Hunter DJ, Zhang Y, Niu J , et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum 2006; 54 (5) 1529-1535
  • 18 Crema MD, Roemer FW, Marra MD , et al. Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: the MOST study. Eur J Radiol 2010; 75 (1) e92-e96
  • 19 Crema MD, Roemer FW, Zhu Y , et al. Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging—the MOST study. Radiology 2010; 256 (3) 855-862
  • 20 Hayashi D, Roemer FW, Dhina Z , et al. Longitudinal assessment of cyst-like lesions of the knee and their relation to radiographic osteoarthritis and MRI-detected effusion and synovitis in patients with knee pain. Arthritis Res Ther 2010; 12 (5) R172
  • 21 Hill CL, Gale DR, Chaisson CE , et al. Periarticular lesions detected on magnetic resonance imaging: prevalence in knees with and without symptoms. Arthritis Rheum 2003; 48 (10) 2836-2844
  • 22 Guermazi A, Hayashi D, Roemer FW , et al. Cyst-like lesions of the knee joint and their relation to incident knee pain and development of radiographic osteoarthritis: the MOST study. Osteoarthritis Cartilage 2010; 18 (11) 1386-1392
  • 23 Guermazi A, Hunter DJ, Roemer FW , et al. Magnetic resonance imaging prevalence of different features of knee osteoarthritis in persons with normal knee X-rays [abstract]. Arthritis Rheum 2007; 56 (suppl) S128
  • 24 Zhang W, Doherty M, Peat G , et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis 2010; 69 (3) 483-489
  • 25 Guermazi A, Burstein D, Conaghan P , et al. Imaging in osteoarthritis. Rheum Dis Clin North Am 2008; 34 (3) 645-687
  • 26 Hunter DJ, Arden N, Conaghan PG , et al; OARSI OA Imaging Working Group. Definition of osteoarthritis on MRI: results of a Delphi exercise. Osteoarthritis Cartilage 2011; 19 (8) 963-969
  • 27 Jones J, Hunter D. Consensus methods for medical and health services research. BMJ 1995; 311 (7001) 376-380
  • 28 Mullen PM. Delphi: myths and reality. J Health Organ Manag 2003; 17 (1) 37-52
  • 29 Hunter DJ, Niu J, Zhang Y , et al; OAI Investigators. Change in cartilage morphometry: a sample of the progression cohort of the Osteoarthritis Initiative. Ann Rheum Dis 2009; 68 (3) 349-356
  • 30 Peterfy CG, Gold G, Eckstein F, Cicuttini F, Dardzinski B, Stevens R. MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis Cartilage 2006; 14 (suppl A) A95-A111
  • 31 Hunter DJ, Guermazi A, Lo GH , et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011; 19 (8) 990-1002
  • 32 Roemer FW, Guermazi A, Lynch JA , et al. Short tau inversion recovery and proton density-weighted fat suppressed sequences for the evaluation of osteoarthritis of the knee with a 1.0 T dedicated extremity MRI: development of a time-efficient sequence protocol. Eur Radiol 2005; 15 (5) 978-987
  • 33 Peterfy CG, Schneider E, Nevitt M. The Osteoarthritis Initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 2008; 16 (12) 1433-1441
  • 34 Hayashi D, Guermazi A, Kwoh CK , et al. Semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts of the knee at 3T MRI: a comparison between intermediate-weighted fat-suppressed spin echo and dual echo steady state sequences. BMC Musculoskelet Disord 2011; 12: 198
  • 35 Hayashi D, Roemer FW, Guermazi A. Choice of pulse sequences for MRI-based semiquantitative assessment of cartilage defects in osteoarthritis research: comment on the article by Dore et al. Arthritis Rheum 2010; 62 (12) 3830-3831
  • 36 Roemer FW, Kwoh CK, Hannon MJ , et al. Semiquantitative assessment of focal cartilage damage at 3T MRI: a comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences. Eur J Radiol 2011; 80 (2) e126-e131
  • 37 Kijowski R, Blankenbaker DG, Davis KW, Shinki K, Kaplan LD, De Smet AA. Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 2009; 250 (3) 839-848
  • 38 Crema MD, Roemer FW, Hayashi D, Guermazi A. Comment on: Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology (Oxford) 2011; 50 (5) 996-997 ; author reply 997–999
  • 39 Loeuille D, Sauliere N, Champigneulle J, Rat AC, Blum A, Chary-Valckenaere I. Comparing non-enhanced and enhanced sequences in the assessment of effusion and synovitis in knee OA: associations with clinical, macroscopic and microscopic features. Osteoarthritis Cartilage 2011; 19 (12) 1433-1439
  • 40 Hayashi D, Roemer FW, Katur A , et al. Imaging of synovitis in osteoarthritis: current status and outlook. Semin Arthritis Rheum 2011; 41 (2) 116-130
  • 41 OAI MRI Procedure Manual. . Available at: www.oai.ucsf.edu/datarelease/OperationsManuals.asp . Accessed July 10, 2012
  • 42 Sakamoto FA, Winalski CS, Schils JP, Parker RD, Polster JM. Vacuum phenomenon: prevalence and appearance in the knee with 3 T magnetic resonance imaging. Skeletal Radiol 2011; 40 (10) 1275-1285
  • 43 Hayashi D, Jarraya M, Guermazi A , et al. Susceptibility artifacts in the tibiofemoral joint space on 3T knee MRI: frequency, longitudinal follow-up and their relation to meniscal tears, radiographic joint space narrowing and calcifications. Paper presented at: OARSI: 6th International Workshop on Osteoarthritis Imaging; July 12–14, 2012; Hilton Head Island, SC
  • 44 Peterfy CG, Guermazi A, Roemer FW , et al. Whole-organ evaluation of the knee in osteoarthritis using MRI [abstract]. Ann Rheum Dis 1999; 38: 342
  • 45 Crema MD, Roemer FW, Felson DT , et al. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: The Multicenter Osteoarthritis Study. Radiology 2012; 264 (2) 494-503
  • 46 Roemer FW, Kwoh CK, Hannon MJ , et al. Risk factors for magnetic resonance imaging-detected patellofemoral and tibiofemoral cartilage loss during a six-month period: the joints on glucosamine study. Arthritis Rheum 2012; 64 (6) 1888-1898
  • 47 Felson DT, Niu J, Guermazi A , et al. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum 2007; 56 (9) 2986-2992
  • 48 Hernández-Molina G, Neogi T, Hunter DJ , et al. The association of bone attrition with knee pain and other MRI features of osteoarthritis. Ann Rheum Dis 2008; 67 (1) 43-47
  • 49 Reichenbach S, Yang M, Eckstein F , et al. Does cartilage volume or thickness distinguish knees with and without mild radiographic osteoarthritis? The Framingham Study. Ann Rheum Dis 2010; 69 (1) 143-149
  • 50 Roemer FW, Guermazi A, Felson DT , et al. Presence of MRI-detected joint effusion and synovitis increases the risk of cartilage loss in knees without osteoarthritis at 30-month follow-up: the MOST study. Ann Rheum Dis 2011; 70 (10) 1804-1809
  • 51 Englund M, Felson DT, Guermazi A , et al. Risk factors for medial meniscal pathology on knee MRI in older US adults: a multicentre prospective cohort study. Ann Rheum Dis 2011; 70 (10) 1733-1739
  • 52 Crema MD, Guermazi A, Sayre EC , et al. The association of magnetic resonance imaging (MRI)-detected structural pathology of the knee with crepitus in a population-based cohort with knee pain: the MoDEKO study. Osteoarthritis Cartilage 2011; 19 (12) 1429-1432
  • 53 Peterfy CG, Guermazi A, Zaim S , et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12 (3) 177-190
  • 54 Kornaat PR, Ceulemans RY, Kroon HM , et al. MRI assessment of knee osteoarthritis: Knee Osteoarthritis Scoring System (KOSS)—inter-observer and intra-observer reproducibility of a compartment-based scoring system. Skeletal Radiol 2005; 34 (2) 95-102
  • 55 Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis 2008; 67 (2) 206-211
  • 56 Felson DT, Lynch J, Guermazi A , et al. Comparison of BLOKS and WORMS scoring systems part II. Longitudinal assessment of knee MRIs for osteoarthritis and suggested approach based on their performance: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2010; 18 (11) 1402-1407
  • 57 Lynch JA, Roemer FW, Nevitt MC , et al. Comparison of BLOKS and WORMS scoring systems part I. Cross sectional comparison of methods to assess cartilage morphology, meniscal damage and bone marrow lesions on knee MRI: data from the osteoarthritis initiative. Osteoarthritis Cartilage 2010; 18 (11) 1393-1401
  • 58 Baker KR, Matthan NR, Lichtenstein AH , et al. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study. Osteoarthritis Cartilage 2012; 20 (5) 382-387
  • 59 Biswal S, Hastie T, Andriacchi TP, Bergman GA, Dillingham MF, Lang P. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum 2002; 46 (11) 2884-2892
  • 60 Duc SR, Koch P, Schmid MR, Horger W, Hodler J, Pfirrmann CW. Diagnosis of articular cartilage abnormalities of the knee: prospective clinical evaluation of a 3D water-excitation true FISP sequence. Radiology 2007; 243 (2) 475-482
  • 61 Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and type II collagen breakdown. Osteoarthritis Cartilage 2005; 13 (3) 198-205
  • 62 Roemer FW, Lynch JA, Niu J , et al. A comparison of dedicated 1.0 T extremity MRI vs large-bore 1.5 T MRI for semiquantitative whole organ assessment of osteoarthritis: the MOST study. Osteoarthritis Cartilage 2010; 18 (2) 168-174
  • 63 Eckstein F, Hudelmaier M, Wirth W , et al. Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 2006; 65 (4) 433-441
  • 64 Madelin G, Jerschow A, Regatte RR. Sodium relaxation times in the knee joint in vivo at 7T. NMR Biomed 2012; 25 (4) 530-537
  • 65 Chang G, Wang L, Liang G, Babb JS, Saha PK, Regatte RR. Reproducibility of subregional trabecular bone micro-architectural measures derived from 7-Tesla magnetic resonance images. MAGMA 2011; 24 (3) 121-125
  • 66 Stahl R, Krug R, Kelley DA , et al. Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skeletal Radiol 2009; 38 (8) 771-783
  • 67 Eckstein F, Ateshian G, Burgkart R , et al. Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage 2006; 14 (10) 974-983
  • 68 Eckstein F, Guermazi A, Roemer FW. Quantitative MR imaging of cartilage and trabecular bone in osteoarthritis. Radiol Clin North Am 2009; 47 (4) 655-673
  • 69 Iranpour-Boroujeni T, Watanabe A, Bashtar R, Yoshioka H, Duryea J. Quantification of cartilage loss in local regions of knee joints using semi-automated segmentation software: analysis of longitudinal data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 2011; 19 (3) 309-314
  • 70 Otterness IG, Eckstein F. Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight. Osteoarthritis Cartilage 2007; 15 (6) 666-672
  • 71 Eckstein F, Hudelmaier M, Cahue S, Marshall M, Sharma L. Medial-to-lateral ratio of tibiofemoral subchondral bone area is adapted to alignment and mechanical load. Calcif Tissue Int 2009; 84 (3) 186-194
  • 72 Wirth W, Buck R, Nevitt M , et al; OAI Investigators. MRI-based extended ordered values more efficiently differentiate cartilage loss in knees with and without joint space narrowing than region-specific approaches using MRI or radiography—data from the OA initiative. Osteoarthritis Cartilage 2011; 19 (6) 689-699
  • 73 Inglis D, Pui M, Ioannidis G , et al. Accuracy and test-retest precision of quantitative cartilage morphology on a 1.0 T peripheral magnetic resonance imaging system. Osteoarthritis Cartilage 2007; 15 (1) 110-115
  • 74 Dam EB, Folkesson J, Pettersen PC, Christiansen C. Automatic morphometric cartilage quantification in the medial tibial plateau from MRI for osteoarthritis grading. Osteoarthritis Cartilage 2007; 15 (7) 808-818
  • 75 Eckstein F, Charles HC, Buck RJ , et al. Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum 2005; 52 (10) 3132-3136
  • 76 Eckstein F, Kunz M, Hudelmaier M , et al. Impact of coil design on the contrast-to-noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the osteoarthritis initiative. Magn Reson Med 2007; 57 (2) 448-454
  • 77 Eckstein F, Kunz M, Schutzer M , et al. Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthritis Cartilage 2007; 15 (11) 1326-1332
  • 78 Burstein D, Gray M, Mosher T, Dardzinski B. Measures of molecular composition and structure in osteoarthritis. Radiol Clin North Am 2009; 47 (4) 675-686
  • 79 Li W, Edelman RR, Prasad PV. Delayed contrast enhanced MRI of meniscus with ionic and non-ionic agents. J Magn Reson Imaging 2011; 33 (3) 731-735
  • 80 Gray ML, Burstein D, Kim YJ, Maroudas A. 2007 Elizabeth Winston Lanier Award Winner. Magnetic resonance imaging of cartilage glycosaminoglycan: basic principles, imaging technique, and clinical applications. J Orthop Res 2008; 26 (3) 281-291
  • 81 Newbould RD, Miller SR, Tielbeek JA , et al. Reproducibility of sodium MRI measures of articular cartilage of the knee in osteoarthritis. Osteoarthritis Cartilage 2012; 20 (1) 29-35
  • 82 Williams A, Sharma L, McKenzie CA, Prasad PV, Burstein D. Delayed gadolinium-enhanced magnetic resonance imaging of cartilage in knee osteoarthritis: findings at different radiographic stages of disease and relationship to malalignment. Arthritis Rheum 2005; 52 (11) 3528-3535
  • 83 Anandacoomarasamy A, Leibman S, Smith G , et al. Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis 2012; 71 (1) 26-32
  • 84 Li W, Scheidegger R, Wu Y , et al. Delayed contrast-enhanced MRI of cartilage: comparison of nonionic and ionic contrast agents. Magn Reson Med 2010; 64 (5) 1267-1273
  • 85 Souza RB, Stehling C, Wyman BT , et al. The effects of acute loading on T1rho and T2 relaxation times of tibiofemoral articular cartilage. Osteoarthritis Cartilage 2010; 18 (12) 1557-1563
  • 86 Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004; 8 (4) 355-368
  • 87 Smith HE, Mosher TJ, Dardzinski BJ , et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 2001; 14 (1) 50-55
  • 88 Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 2000; 214 (1) 259-266
  • 89 Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232 (2) 592-598
  • 90 Hovis KK, Stehling C, Souza RB , et al. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum 2011; 63 (8) 2248-2256
  • 91 Newbould RD, Miller SR, Toms LD , et al. T2* measurement of the knee articular cartilage in osteoarthritis at 3T. J Magn Reson Imaging 2012; 35 (6) 1422-1429
  • 92 Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis 2011; 70 (1) 60-67
  • 93 Menashe L, Hirko K, Losina E , et al. The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 2012; 20 (1) 13-21
  • 94 Haugen IK, Lillegraven S, Slatkowsky-Christensen B , et al. Hand osteoarthritis and MRI: development and first validation step of the proposed Oslo Hand Osteoarthritis MRI score. Ann Rheum Dis 2011; 70 (6) 1033-1038
  • 95 Roemer FW, Hunter DJ, Winterstein A , et al. Hip Osteoarthritis MRI Scoring System (HOAMS): reliability and associations with radiographic and clinical findings. Osteoarthritis Cartilage 2011; 19 (8) 946-962
  • 96 Haugen IK, Bøyesen P, Slatkowsky-Christensen B , et al. Comparison of features by MRI and radiographs of the interphalangeal finger joints in patients with hand osteoarthritis. Ann Rheum Dis 2012; 71 (3) 345-350
  • 97 Haugen IK, Bøyesen P, Slatkowsky-Christensen B, Sesseng S, van der Heijde D, Kvien TK. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarthritis. Ann Rheum Dis 2012; 71 (6) 899-904
  • 98 Notohamiprodjo M, Kuschel B, Horng A , et al. 3D-MRI of the ankle with optimized 3D-SPACE. Invest Radiol 2012; 47 (4) 231-239
  • 99 Apprich S, Trattnig S, Welsch GH , et al. Assessment of articular cartilage repair tissue after matrix-associated autologous chondrocyte transplantation or the microfracture technique in the ankle joint using diffusion-weighted imaging at 3 Tesla. Osteoarthritis Cartilage 2012; 20 (7) 703-711