Semin Musculoskelet Radiol 2012; 16(05): 367-376
DOI: 10.1055/s-0032-1329880
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Optimizing MRI for Imaging Peripheral Arthritis

Richard J. Hodgson
1   Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds, United Kingdom
,
Philip J. O'Connor
1   Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds, United Kingdom
,
John P. Ridgway
1   Leeds Musculoskeletal Biomedical Research Unit, University of Leeds, Chapel Allerton Hospital, Leeds, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
04 December 2012 (online)

Abstract

MRI is increasingly used for the assessment of both inflammatory arthritis and osteoarthritis. The wide variety of MRI systems in use ranges from low-field, low-cost extremity units to whole-body high-field 7-T systems, each with different strengths for specific applications. The availability of dedicated radiofrequency phased-array coils allows the rapid acquisition of high-resolution images of one or more peripheral joints. MRI is uniquely flexible in its ability to manipulate image contrast, and individual MR sequences may be combined into protocols to sensitively visualize multiple features of arthritis including synovitis, bone marrow lesions, erosions, cartilage changes, and tendinopathy. Careful choice of the imaging parameters allows images to be generated with optimal quality while minimizing unwanted artifacts. Finally, there are many novel MRI techniques that can quantify disease levels in arthritis in tissues including synovitis and cartilage.

 
  • References

  • 1 Østergaard M, Peterfy C, Conaghan P , et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 2003; 30 (6) 1385-1386
  • 2 Calisir C, Murat Aynaci AI, Korkmaz C. The accuracy of magnetic resonance imaging of the hands and feet in the diagnosis of early rheumatoid arthritis. Joint Bone Spine 2007; 74 (4) 362-367
  • 3 Ostendorf B, Scherer A, Mödder U, Schneider M. Diagnostic value of magnetic resonance imaging of the forefeet in early rheumatoid arthritis when findings on imaging of the metacarpophalangeal joints of the hands remain normal. Arthritis Rheum 2004; 50 (7) 2094-2102
  • 4 Boutry N, Lardé A, Lapègue F, Solau-Gervais E, Flipo RM, Cotten A. Magnetic resonance imaging appearance of the hands and feet in patients with early rheumatoid arthritis. J Rheumatol 2003; 30 (4) 671-679
  • 5 Ejbjerg BJ, Vestergaard A, Jacobsen S, Thomsen HS, Østergaard M. The smallest detectable difference and sensitivity to change of magnetic resonance imaging and radiographic scoring of structural joint damage in rheumatoid arthritis finger, wrist, and toe joints: a comparison of the OMERACT rheumatoid arthritis magnetic resonance imaging score applied to different joint combinations and the Sharp/van der Heijde radiographic score. Arthritis Rheum 2005; 52 (8) 2300-2306
  • 6 Hayashi D, Roemer FW, Katur A , et al. Imaging of synovitis in osteoarthritis: current status and outlook. Semin Arthritis Rheum 2011; 41 (2) 116-130
  • 7 Eshed I, Althoff CE, Feist E , et al. Magnetic resonance imaging of hindfoot involvement in patients with spondyloarthritides: comparison of low-field and high-field strength units. Eur J Radiol 2008; 65 (1) 140-147
  • 8 Ostergaard M, McQueen F, Wiell C , et al. The OMERACT psoriatic arthritis magnetic resonance imaging scoring system (PsAMRIS): definitions of key pathologies, suggested MRI sequences, and preliminary scoring system for PsA Hands. J Rheumatol 2009; 36 (8) 1816-1824
  • 9 Crema MD, Roemer FW, Marra MD , et al. Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 2011; 31 (1) 37-61
  • 10 Roemer FW, Eckstein F, Guermazi A. Magnetic resonance imaging-based semiquantitative and quantitative assessment in osteoarthritis. Rheum Dis Clin North Am 2009; 35 (3) 521-555
  • 11 Jessel RH, Zilkens C, Tiderius C, Dudda M, Mamisch TC, Kim YJ. Assessment of osteoarthritis in hips with femoroacetabular impingement using delayed gadolinium enhanced MRI of cartilage. J Magn Reson Imaging 2009; 30 (5) 1110-1115
  • 12 Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C. Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 2004; 183 (2) 343-351
  • 13 Lindegaard HM, Vallø J, Hørslev-Petersen K, Junker P, Østergaard M. Low-cost, low-field dedicated extremity magnetic resonance imaging in early rheumatoid arthritis: a 1-year follow-up study. Ann Rheum Dis 2006; 65 (9) 1208-1212
  • 14 Link TM. MR imaging in osteoarthritis: hardware, coils, and sequences. Radiol Clin North Am 2009; 47 (4) 617-632
  • 15 McQueen F, Lassere M, Edmonds J , et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Summary of OMERACT 6 MR Imaging Module. J Rheumatol 2003; 30 (6) 1387-1392
  • 16 Hunter DJ, Guermazi A, Lo GH , et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011; 19 (8) 990-1002
  • 17 Peterfy CG, Guermazi A, Zaim S , et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004; 12 (3) 177-190
  • 18 Huh YM, Suh JS, Jeong EK , et al. Role of the inflamed synovial volume of the wrist in defining remission of rheumatoid arthritis with gadolinium-enhanced 3D-SPGR MR imaging. J Magn Reson Imaging 1999; 10 (2) 202-208
  • 19 Østergaard M, Klarlund M. Importance of timing of post-contrast MRI in rheumatoid arthritis: what happens during the first 60 minutes after IV gadolinium-DTPA?. Ann Rheum Dis 2001; 60 (11) 1050-1054
  • 20 Yamato M, Tamai K, Yamaguchi T, Ohno W. MRI of the knee in rheumatoid arthritis: Gd-DTPA perfusion dynamics. J Comput Assist Tomogr 1993; 17 (5) 781-785
  • 21 Shellock FG, Spinazzi A. MRI safety update 2008: Part 2, screening patients for MRI. AJR Am J Roentgenol 2008; 191 (4) 1140-1149
  • 22 Shellock FG, Spinazzi A. MRI safety update 2008: Part 1, MRI contrast agents and nephrogenic systemic fibrosis. AJR Am J Roentgenol 2008; 191 (4) 1129-1139
  • 23 Tamai M, Kawakami A, Uetani M , et al. Magnetic resonance imaging (MRI) detection of synovitis and bone lesions of the wrists and finger joints in early-stage rheumatoid arthritis: comparison of the accuracy of plain MRI-based findings and gadolinium-diethylenetriamine pentaacetic acid-enhanced MRI-based findings. Mod Rheumatol 2012; 22 (5) 654-658
  • 24 Ostergaard M, Conaghan PG, O'Connor P , et al. Reducing invasiveness, duration, and cost of magnetic resonance imaging in rheumatoid arthritis by omitting intravenous contrast injection—Does it change the assessment of inflammatory and destructive joint changes by the OMERACT RAMRIS?. J Rheumatol 2009; 36 (8) 1806-1810
  • 25 Roemer FW, Hunter DJ, Guermazi A. Semiquantitative assessment of synovitis in osteoarthritis on non contrast-enhanced MRI. Osteoarthritis Cartilage 2009; 17 (6) 820-821 ; author reply 822–824
  • 26 Xu L, Hayashi D, Roemer FW, Felson DT, Guermazi A. Magnetic resonance imaging of subchondral bone marrow lesions in association with osteoarthritis. Semin Arthritis Rheum 2012; 42 (2) 105-118
  • 27 Arndt III WF, Truax AL, Barnett FM, Simmons GE, Brown DC. MR diagnosis of bone contusions of the knee: comparison of coronal T2-weighted fast spin-echo with fat saturation and fast spin-echo STIR images with conventional STIR images. AJR Am J Roentgenol 1996; 166 (1) 119-124
  • 28 Hayashi D, Guermazi A, Kwoh CK , et al. Semiquantitative assessment of subchondral bone marrow edema-like lesions and subchondral cysts of the knee at 3T MRI: a comparison between intermediate-weighted fat-suppressed spin echo and Dual Echo Steady State sequences. BMC Musculoskelet Disord 2011; 12: 198
  • 29 Mayerhoefer ME, Breitenseher MJ, Kramer J, Aigner N, Norden C, Hofmann S. STIR vs. T1-weighted fat-suppressed gadolinium-enhanced MRI of bone marrow edema of the knee: computer-assisted quantitative comparison and influence of injected contrast media volume and acquisition parameters. J Magn Reson Imaging 2005; 22 (6) 788-793
  • 30 Schmid MR, Hodler J, Vienne P, Binkert CA, Zanetti M. Bone marrow abnormalities of foot and ankle: STIR versus T1-weighted contrast-enhanced fat-suppressed spin-echo MR imaging. Radiology 2002; 224 (2) 463-469
  • 31 Ejbjerg B, Narvestad E, Rostrup E , et al. Magnetic resonance imaging of wrist and finger joints in healthy subjects occasionally shows changes resembling erosions and synovitis as seen in rheumatoid arthritis. Arthritis Rheum 2004; 50 (4) 1097-1106
  • 32 Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 2008; 16 (12) 1433-1441
  • 33 Schneider E, Nevitt M, McCulloch C , et al. Equivalence and precision of knee cartilage morphometry between different segmentation teams, cartilage regions, and MR acquisitions. Osteoarthritis Cartilage 2012; 20 (8) 869-879
  • 34 Wirth W, Nevitt M, Hellio Le Graverand MP , et al. Sensitivity to change of cartilage morphometry using coronal FLASH, sagittal DESS, and coronal MPR DESS protocols—comparative data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 2010; 18 (4) 547-554
  • 35 Mosher TJ, Pruett SW. Magnetic resonance imaging of superficial cartilage lesions: role of contrast in lesion detection. J Magn Reson Imaging 1999; 10 (2) 178-182
  • 36 Kijowski R. Clinical cartilage imaging of the knee and hip joints. AJR Am J Roentgenol 2010; 195 (3) 618-628
  • 37 Schick F, Dammann F, Lutz O, Claussen CD. Adapted techniques for clinical MR imaging of tendons. MAGMA 1995; 3 (2) 103-107
  • 38 Zhuo J, Gullapalli RP. AAPM/RSNA physics tutorial for residents: MR artifacts, safety, and quality control. Radiographics 2006; 26 (1) 275-297
  • 39 Peh WC, Chan JH. Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol 2001; 30 (4) 179-191
  • 40 Jones RW, Witte RJ. Signal intensity artifacts in clinical MR imaging. Radiographics 2000; 20 (3) 893-901
  • 41 Chen CA, Chen W, Goodman SB , et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 2011; 33 (5) 1121-1127
  • 42 Erickson SJ, Prost RW, Timins ME. The “magic angle” effect: background physics and clinical relevance. Radiology 1993; 188 (1) 23-25
  • 43 Li T, Mirowitz SA. Manifestation of magic angle phenomenon: comparative study on effects of varying echo time and tendon orientation among various MR sequences. Magn Reson Imaging 2003; 21 (7) 741-744
  • 44 Ostergaard M, Stoltenberg M, Løvgreen-Nielsen P, Volck B, Sonne-Holm S, Lorenzen I. Quantification of synovitis by MRI: correlation between dynamic and static gadolinium-enhanced magnetic resonance imaging and microscopic and macroscopic signs of synovial inflammation. Magn Reson Imaging 1998; 16 (7) 743-754
  • 45 Gaffney K, Cookson J, Blades S, Coumbe A, Blake D. Quantitative assessment of the rheumatoid synovial microvascular bed by gadolinium-DTPA enhanced magnetic resonance imaging. Ann Rheum Dis 1998; 57 (3) 152-157
  • 46 Kalden-Nemeth D, Grebmeier J, Antoni C, Manger B, Wolf F, Kalden JR. NMR monitoring of rheumatoid arthritis patients receiving anti-TNF-alpha monoclonal antibody therapy. Rheumatol Int 1997; 16 (6) 249-255
  • 47 Du J, Takahashi AM, Bydder M, Chung CB, Bydder GM. Ultrashort TE imaging with off-resonance saturation contrast (UTE-OSC). Magn Reson Med 2009; 62 (2) 527-531
  • 48 Filho GH, Du J, Pak BC , et al. Quantitative characterization of the Achilles tendon in cadaveric specimens: T1 and T2* measurements using ultrashort-TE MRI at 3 T. AJR Am J Roentgenol 2009; 192 (3) W117-124
  • 49 Gatehouse PD, He T, Puri BK, Thomas RD, Resnick D, Bydder GM. Contrast-enhanced MRI of the menisci of the knee using ultrashort echo time (UTE) pulse sequences: imaging of the red and white zones. Br J Radiol 2004; 77 (920) 641-647
  • 50 Robson MD, Benjamin M, Gishen P, Bydder GM. Magnetic resonance imaging of the Achilles tendon using ultrashort TE (UTE) pulse sequences. Clin Radiol 2004; 59 (8) 727-735
  • 51 Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S. T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 2004; 232 (2) 592-598
  • 52 Mosher TJ, Dardzinski BJ, Smith MB. Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2—preliminary findings at 3 T. Radiology 2000; 214 (1) 259-266
  • 53 McKenzie CA, Williams A, Prasad PV, Burstein D. Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging 2006; 24 (4) 928-933
  • 54 Siversson C, Tiderius CJ, Neuman P, Dahlberg L, Svensson J. Repeatability of T1-quantification in dGEMRIC for three different acquisition techniques: two-dimensional inversion recovery, three-dimensional look locker, and three-dimensional variable flip angle. J Magn Reson Imaging 2010; 31 (5) 1203-1209
  • 55 Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 2006; 19 (7) 781-821
  • 56 Madelin G, Lee JS, Inati S, Jerschow A, Regatte RR. Sodium inversion recovery MRI of the knee joint in vivo at 7T. J Magn Reson 2010; 207 (1) 42-52
  • 57 Schmitt B, Zbýn S, Stelzeneder D , et al. Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7 T. Radiology 2011; 260 (1) 257-264
  • 58 Singh A, Haris M, Cai K , et al. Chemical exchange saturation transfer magnetic resonance imaging of human knee cartilage at 3 T and 7 T. Magn Reson Med 2012; 68 (2) 588-594