Subscribe to RSS
DOI: 10.1055/s-0032-1313078
© Georg Thieme Verlag KG Stuttgart · New York
Synthetische Letalität als Therapiekonzept für die Behandlung maligner Neoplasien
Synthetic lethality as a new concept for the treatment of cancerPublication History
Publication Date:
23 August 2012 (online)

Zusammenfassung
Als Antwort auf DNA-Schäden aktivieren Zellen ein komplexes DNA-Schadensantwort-Signal-Netzwerk, um den Zellzyklus zu stoppen, DNA zu reparieren oder bei extensiven Schäden den apoptotischen Zelltod einzuleiten. Gene der DNA-Schadensantwort („DNA damage response“) sind unter den am häufigsten mutierten Genen in humanen Krebserkrankungen, und es wird angenommen, dass diese Läsionen einen „Mutator-Phänotyp“ hervorrufen, der die unkontrollierte Proliferation von Krebszellen fördert. Diese genetischen Läsionen können allerdings auch als die „Achilles-Ferse“ der Krebszellen betrachtet werden. Diese Vulnerabilitäten sind insbesondere aus klinischer Sicht hochinteressant, da sie genetisch-gesteuerte neue Therapieansätze für die Behandlung maligner Neoplasien liefern. Hier diskutieren wir ein solches personalisiertes Therapiekonzept – die synthetische Letalität. Wir erörtern die ersten erfolgreichen klinischen Anwendungen der synthetischen Letalität zur Therapie von Krebserkrankungen und beleuchten präklinische Entwicklungen, die vor dem Schritt in die klinische Testung stehen.
Abstract
Following DNA damage, cells activate a complex DNA-damage-response (DDR) signaling network to arrest the cell cycle, repair DNA and, if the extend of damage is beyond repair capacity, induce apoptosis. DDR genes are among the most commonly mutated genes in human cancer and it is believed that these lesions promote a „mutator-phenotype“ that fuels the runaway proliferation of cancer cells. However, these genetic lesions can also be seen as the „Achilles heel“ of cancer. These tumor cell-specific vulnerabilities are of extraordinary clinical interest, since they allow genetically-guided novel therapeutic regimens for the treatment of cancer. Here, we discuss such a novel therapeutic concept – synthetic lethality. We focus on the first successful clinical applications of synthetic lethality for the treatment of different cancer entities. In addition, we give a brief review of recently developed, synthetic lethality-based approaches that are close to clinical testing.
Schlüsselwörter
Krebs - Onkogen - Tumorsuppressorgen - synthetische Letalität
Keywords
cancer - oncogene - tumor suppressor gene - synthetic lethality
Literatur
- 1
Audeh M W, Carmichael J, Penson R T. et al .
Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2
mutations and recurrent ovarian cancer: a proof-of-concept trial.
Lancet.
2010;
376
245-251
MissingFormLabel
- 2
Bryant H E, Schultz N, Thomas H D. et al .
Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.
Nature.
2005;
434
913-917
MissingFormLabel
- 3
Dickgreber N, Huber R M, Reck M. et al .
Aktuelle Entwicklungen und Perspektiven zielgerichteter Therapien.
Onkologie.
2010;
33
(Suppl 5)
2-11
MissingFormLabel
- 4
Dohner H, Stilgenbauer S, Benner A. et al .
Genomic aberrations and survival in chronic lymphocytic leukemia.
N Engl J Med.
2000;
343
1910-1916
MissingFormLabel
- 5
Dumont F, Altmeyer A, Bischoff P.
Radiosensitising agents for the radiotherapy of cancer: novel molecularly targeted
approaches.
Expert Opin Ther Pat.
2009;
19
775-799
MissingFormLabel
- 6
Edwards S L, Brough R, Lord C J. et al .
Resistance to therapy caused by intragenic deletion in BRCA2.
Nature.
2008;
451
1111-1115
MissingFormLabel
- 7
Farmer H, McCabe N, Lord C J. et al .
Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
Nature.
2005;
434
917-921
MissingFormLabel
- 8
Fong P C, Boss D S, Yap T A. et al .
Inhibition of poly(ADP-Ribose) polymerase in tumors from BRCA mutation carriers.
N Engl J Med.
2009;
361
123-134
MissingFormLabel
- 9
Greenman C, Wooster R, Futreal P A, Stratton M R, Easton D F.
Statistical analysis of pathogenicity of somatic mutations in cancer.
Genetics.
2006;
173
2187-2198
MissingFormLabel
- 10
Gurley K E, Kemp C J.
Synthetic lethality between mutation in Atm and DNA-PK(cs) during murine embryogenesis.
Curr Biol.
2001;
11
191-194
MissingFormLabel
- 11
Hanahan D, Weinberg R A.
Hallmarks of cancer: the next generation.
Cell.
2011;
144
646-674
MissingFormLabel
- 12
Hoeijmakers J H.
Genome maintenance mechanisms for preventing cancer.
Nature.
2001;
411
366-374
MissingFormLabel
- 13
Jiang H, Reinhardt H C, Bartkova J. et al .
The combined status of ATM and p53 link tumor development with therapeutic response.
Genes Dev.
2009;
23
1895-1909
MissingFormLabel
- 14
Kaelin Jr W G.
The concept of synthetic lethality in the context of anticancer therapy.
Nat Rev Cancer.
2005;
5
689-698
MissingFormLabel
- 15
Luo J, Emanuele M J, Li D. et al .
A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the
Ras oncogene.
Cell.
2009;
137
835-848
MissingFormLabel
- 16
Martin S A, Lord C J, Ashworth A.
DNA repair deficiency as a therapeutic target in cancer.
Curr Opin Genet Dev.
2008;
18
80-86
MissingFormLabel
- 17
Martins C P, Brown-Swigart L, Evan G I.
Modeling the therapeutic efficacy of p53 restoration in tumors.
Cell.
2006;
127
1323-1334
MissingFormLabel
- 18
Meindl A, Hellebrand H, Wiek C. et al .
Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human
cancer susceptibility gene.
Nat Genet.
2010;
42
410-414
MissingFormLabel
- 19
O’Shaughnessy J, Osborne C, Pippen J E. et al .
Iniparib plus chemotherapy in metastatic triple-negative breast cancer.
N Engl J Med.
2011;
364
205-214
MissingFormLabel
- 20
Reinhardt H C, Aslanian A S, Lees J A, Yaffe M B.
p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the
p38 MAPK/MK2 pathway for survival after DNA damage.
Cancer Cell.
2007;
11
175-189
MissingFormLabel
- 21
Reinhardt H C, Hasskamp P, Schmedding I. et al .
DNA Damage Activates a Spatially Distinct Late Cytoplasmic Cell-Cycle Checkpoint Network
Controlled by MK2-Mediated RNA Stabilization.
Molecular Cell.
2010;
40
34-49
MissingFormLabel
- 22
Reinhardt H C, Jiang H, Hemann M T, Yaffe M B.
Exploiting synthetic lethal interactions for targeted cancer therapy.
Cell Cycle.
2009;
8
3112-3119
MissingFormLabel
- 23
Reinhardt H C, Yaffe M B.
Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2.
Curr Opin Cell Biol.
2009;
21
245-255
MissingFormLabel
- 24
Scholl C, Frohling S, Dunn I F. et al .
Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression
in human cancer cells.
Cell.
2009;
137
821-834
MissingFormLabel
- 25
Soda M, Choi Y L, Enomoto M. et al .
Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.
Nature.
2007;
448
561-566
MissingFormLabel
- 26
Tutt A, Robson M, Garber J E. et al .
Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2
mutations and advanced breast cancer: a proof-of-concept trial.
Lancet.
2010;
376
235-244
MissingFormLabel
- 27
Tutt A N, Lord C J, McCabe N. et al .
Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic
strategies for cancer.
Cold Spring Harb Symp Quant Biol.
2005;
70
139-148
MissingFormLabel
- 28
Ventura A, Kirsch D G, McLaughlin M E. et al .
Restoration of p53 function leads to tumour regression in vivo.
Nature.
2007;
445
661-665
MissingFormLabel
- 29
Wood L D, Parsons D W, Jones S. et al .
The genomic landscapes of human breast and colorectal cancers.
Science.
2007;
318
1108-1113
MissingFormLabel
- 30
Xue W, Zender L, Miething C. et al .
Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.
Nature.
2007;
445
656-660
MissingFormLabel
Korrespondenzadresse
PD Dr. med. Hans Christian Reinhardt
Universitätsklinik Köln
Medizinische Klinik I
Weyertal 115B
50931 Köln
Phone: 0221/478-96701
Email: christian.reinhardt@uk-koeln.de