Horm Metab Res 2012; 44(07): 501-505
DOI: 10.1055/s-0032-1312595
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Glucose-dependent Insulinotropic Polypeptide (GIP) Inhibits Signaling Pathways of Advanced Glycation End Products (AGEs) in Endothelial Cells via its Antioxidative Properties

A. Ojima
1   Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
,
T. Matsui
1   Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
,
S. Maeda
1   Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
,
M. Takeuchi
2   Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kanazawa, Japan
,
S. Yamagishi
1   Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume, Japan
› Author Affiliations
Further Information

Publication History

received 12 November 2011

accepted 04 October 2012

Publication Date:
11 May 2012 (online)

Abstract

Glucose-dependent insulinotropic polypeptide (GIP) is one of the incretins, a gut hormone secreted from K cells in the intestine in response to food intake. It could be a potential therapeutic target for the treatment of patients with type 2 diabetes. However, effects of GIP on vascular injury remain unknown. Since interaction of advanced glycation end products (AGEs) with their receptor RAGE has been shown to play a crucial role in vascular damage in diabetes, this study investigated whether and how GIP blocked the deleterious effects of AGEs on human umbilical vein endothelial cells (HUVECs). GIP receptor was expressed in HUVECs. GIP, an analogue of cyclic AMP or inhibitors of NADPH oxidase inhibited the AGE-induced reactive oxygen species (ROS) generation in HUVECs. Furthermore, GIP reduced both RAGE mRNA and protein levels in HUVECs. GLP-1 also blocked the AGE-induced increase in mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and plasminogen activator inhibitor-1 in HUVECs. In addition, an antioxidant N-acetylcysteine mimicked the effects of GIP on RAGE and VCAM-1 gene expression in HUVECs. Our present study suggests that GIP could block the signal pathways of AGEs in HUVECs by reducing ROS generation and subsequent RAGE expression probably via GIP receptor-cyclic AMP axis.

 
  • References

  • 1 Yamagishi S, Imaizumi T. Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Curr Pharm Des 2005; 11: 2279-2299
  • 2 Takenaka K, Yamagishi S, Matsui T, Nakamura K, Imaizumi T. Role of advanced glycation end products (AGEs) in thrombogenic abnormalities in diabetes. Curr Neurovasc Res 2006; 3: 73-77
  • 3 Yamagishi S, Matsui T, Nakamura K. Kinetics, role and therapeutic implications of endogenous soluble form of receptor for advanced glycation end products (sRAGE) in diabetes. Curr Drug Targets 2007; 8: 1138-1143
  • 4 Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 2008; 60: 470-512
  • 5 Winzell MS, Ahrén B. G-protein-coupled receptors and islet function-implications for treatment of type 2 diabetes. Pharmacol Rev 2007; 116: 437-448
  • 6 Siegel EG, Creutzfeldt W. Stimulation of insulin release in isolated rat islets by GIP in physiological concentrations and its relation to islet cyclic AMP content. Diabetologia 1985; 28: 857-861
  • 7 Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 1993; 133: 2861-2870
  • 8 Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, Koga H, Ueno T, Sata M. Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia 2006; 49: 3094-3099
  • 9 Yamagishi S, Nakamura K, Matsui T, Inagaki Y, Takenaka K, Jinnouchi Y, Yoshida Y, Matsuura T, Narama I, Motomiya Y, Takeuchi M, Inoue H, Yoshimura A, Bucala R, Imaizumi T. Pigment epithelium-derived factor inhibits advanced glycation end product-induced retinal vascular hyperpermeability by blocking reactive oxygen species-mediated vascular endothelial growth factor expression. J Biol Chem 2006; 281: 20213-20220
  • 10 Ottonello L, Morone MP, Dapino P, Dallegri F. Tumour necrosis factor alpha-induced oxidative burst in neutrophils adherent to fibronectin: effects of cyclic AMP-elevating agents. Br J Haematol 1995; 91: 566-570
  • 11 Tanaka N, Yonekura H, Yamagishi S, Fujimori H, Yamamoto Y, Yamamoto H. The receptor for advanced glycation end products is induced by the glycation products themselves and tumor necrosis factor-alpha through nuclear factor-kappa B, and by 17beta-estradiol through Sp-1 in human vascular endothelial cells. J Biol Chem 2000; 275: 25781-25790
  • 12 Yamagishi S, Matsui T, Nakamura K, Yoshida T, Takeuchi M, Inoue H, Yoshida Y, Imaizumi T. Pigment-epithelium-derived factor suppresses expression of receptor for advanced glycation end products in the eye of diabetic rats. Ophthalmic Res 2007; 39: 92-97
  • 13 Yamagishi S, Fujimori H, Yonekura H, Yamamoto Y, Yamamoto H. Advanced glycation endproducts inhibit prostacyclin production and induce plasminogen activator inhibitor-1 in human microvascular endothelial cells. Diabetologia 1998; 41: 1435-1441
  • 14 Ishibashi Y, Matsui T, Takeuchi M, Yamagishi S. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced up-regulation of VCAM-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression. Biophys Res Commun 2010; 391: 1405-1408
  • 15 Preiss DJ, Sattar N. Vascular cell adhesion molecule-1: a viable therapeutic target for atherosclerosis?. Int J Clin Pract 2007; 6: 697-701
  • 16 Westrick RJ, Eitzman DT. Plasminogen activator inhibitor-1 in vascular thrombosis. Curr Drug Targets 2007; 8: 966-1002
  • 17 Nagashima M, Watanabe T, Terasaki M, Tomoyasu M, Nohtomi K, Kim-Kaneyama J, Miyazaki A, Hirano T. Native incretins prevent the development of atherosclerotic lesions in apolipoprotein E knockout mice. Diabetologia 2011; 54: 2649-2659
  • 18 Herman GA, Bergman A, Stevens C, Kotey P, Yi B, Zhao P, Dietrich B, Golor G, Schrodter A, Keymeulen B, Lasseter KC, Kipnes MS, Snyder K, Hilliard D, Tanen M, Cilissen C, De Smet M, de Lepeleire I, Van Dyck K, Wang AQ, Zeng W, Davies MJ, Tanaka W, Holst JJ, Deacon CF, Gottesdiener KM, Wagner JA. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab 2006; 91: 4612-4619
  • 19 Takeuchi M, Makita Z, Bucala R, Suzuki T, Koike T, Kameda Y. Immunological evidence that non-carboxymethyllysine advanced glycation end-products are produced from short chain sugars and dicarbonyl compounds in vivo. Mol Med 2000; 6: 114-125