Planta Med 2012; 78(08): 779-786
DOI: 10.1055/s-0031-1298458
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Flavonoids Eupatorin and Sinensetin Present in Orthosiphon stamineus Leaves Inhibit Inflammatory Gene Expression and STAT1 Activation

Mirka Laavola
1   The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
,
Riina Nieminen
1   The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
,
Mun Fei Yam
2   School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
3   Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
,
Amirin Sadikun
2   School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
,
Mohd Zaini Asmawi
2   School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
,
Rusliza Basir
3   Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
,
Jukka Welling
1   The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
,
Heikki Vapaatalo
4   Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
,
Riku Korhonen
1   The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
,
Eeva Moilanen
1   The Immunopharmacology Research Group, University of Tampere School of Medicine and Tampere University Hospital, Tampere, Finland
› Author Affiliations
Further Information

Publication History

received 14 November 2011
revised 20 March 2012

accepted 24 March 2012

Publication Date:
19 April 2012 (online)

Abstract

Cytokines and other inflammatory mediators, such as prostaglandin E2 (PGE2) and nitric oxide (NO) produced by cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), respectively, activate and drive inflammation and therefore serve as targets for anti-inflammatory drug development. Orthosiphon stamineus is an indigenous medicinal plant of Southeast Asia that has been traditionally used in the treatment of rheumatoid arthritis, gout, and other inflammatory disorders. The present study investigated the anti-inflammatory properties of Orthosiphon stamineus leaf chloroform extract (CE), its flavonoid-containing CE fraction 2 (CF2), and the flavonoids eupatorin, eupatorin-5-methyl ether (TMF), and sinensetin, identified from the CF2. It was found that CE (20 and 50 µg/mL) and CF2 (20 and 50 µg/mL) inhibited iNOS expression and NO production, as well as PGE2 production. Eupatorin and sinensetin inhibited iNOS and COX-2 expression and the production of NO (IC50 5.2 µM and 9.2 µM for eupatorin and sinensetin, respectively) and PGE2 (IC50 5.0 µM and 2.7 µM for eupatorin and sinensetin, respectively) in a dose-dependent manner. The extracts and the compounds also inhibited tumor necrosis factor α (TNF-α) production (IC50 5.0 µM and 2.7 µM for eupatorin and sinensetin, respectively). Eupatorin and sinensetin inhibited lipopolysaccharide (LPS)-induced activation of transcription factor signal transducers and activators of transcription 1α (STAT1α). Furthermore, eupatorin (50 mg/kg i. p.) and sinensetin (50 mg/kg i. p.) inhibited carrageenan-induced paw inflammation in mice. The results suggest that CE and CF2, as well as the known constituents of CF2, i.e., eupatorin and sinensetin, have meaningful anti-inflammatory properties which may be utilized in the development of novel anti-inflammatory treatments.

 
  • References

  • 1 Korhonen R, Moilanen E. Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis. Basic Clin Pharmacol Toxicol 2009; 104: 276-284
  • 2 Williams RO, Paleolog E, Feldmann M. Cytokine inhibitors in rheumatoid arthritis and other autoimmune diseases. Curr Opin Pharmacol 2007; 7: 412-417
  • 3 Korhonen R, Moilanen E. Anti-CD20 antibody rituximab in the treatment of rheumatoid arthritis. Basic Clin Pharmacol Toxicol 2010; 106: 13-21
  • 4 Korhonen R, Lahti A, Kankaanranta H, Moilanen E. Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy 2005; 4: 471-479
  • 5 Pautz A, Art J, Hahn S, Nowag S, Voss C, Kleinert H. Regulation of the expression of inducible nitric oxide synthase. Nitric Oxide 2010; 23: 75-93
  • 6 Vuolteenaho K, Moilanen T, Moilanen E. Non-steroidal anti-inflammatory drugs, cyclooxygenase-2 and the bone healing process. Basic Clin Pharmacol Toxicol 2008; 102: 10-14
  • 7 Simmons DL, Botting RM, Hla T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004; 56: 387-437
  • 8 Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 2001; 104: 487-501
  • 9 Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 2003; 10: 45-65
  • 10 Feldmann M. Development of anti-TNF therapy for rheumatoid arthritis. Nat Rev Immunol 2002; 2: 364-371
  • 11 Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci 2005; 78: 431-441
  • 12 Awale S, Tezuka Y, Banskota AH, Kadota S. Siphonols A–E: novel nitric oxide inhibitors from Orthosiphon stamineus of Indonesia. Bioorg Med Chem Lett 2003; 13: 31-35
  • 13 Banskota AH, Tezuka Y, Le Tran Q, Kadota S. Chemical constituents and biological activities of Vietnamese medicinal plants. Curr Top Med Chem 2003; 3: 227-248
  • 14 Loon YH, Wong JW, Yap SP, Yuen KH. Determination of flavonoids from Orthosiphon stamineus in plasma using a simple HPLC method with ultraviolet detection. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 816: 161-166
  • 15 Keng CL, Siong LP. Morphological similarities and differences between the two varieties of catʼs whiskers (Orthosiphon stamineus Benth.) grown in Malaysia. Int J Bot 2006; 2: 1-6
  • 16 Sim CO, Ahmad MN, Ismail Z, Othman AR, Noor NAM, Zaihidee EM. Chemometric classification of herb – Orthosiphon stamineus according to its geographical origin using virtual chemical sensor based upon fast GC. Sensors 2003; 3: 458-471
  • 17 Nguyen MT, Awale S, Tezuka Y, Chien-Hsiung C, Kadota S. Staminane- and isopimarane-type diterpenes from Orthosiphon stamineus of Taiwan and their nitric oxide inhibitory activity. J Nat Prod 2004; 67: 654-658
  • 18 Orthosiphon stamineus Benth. ICS-UNIDO database on medicinal and aromatic plants. Available at http://maps.ics.trieste.it/Home/Plant/636 Accessed 2007
  • 19 Schinella GR, Giner RM, Recio MC, Mordujovich de Buschiazzo P, Rios JL, Manez S. Anti-inflammatory effects of South American Tanacetum vulgare . J Pharm Pharmacol 1998; 50: 1069-1074
  • 20 Yam MF, Lim V, Salman IM, Ameer OZ, Ang LF, Rosidah N, Abdulkarim MF, Abdullah GZ, Basir R, Sadikun A, Asmawi MZ. HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of Orthosiphon stamineus leaves. Molecules 2010; 15: 4452-4466
  • 21 Korhonen R, Kankaanranta H, Lahti A, Lähde M, Knowles RG, Moilanen E. Bi-directional effects of the elevation of intracellular calcium on the expression of inducible nitric oxide synthase in J774 macrophages exposed to low and to high concentrations of endotoxin. Biochem J 2001; 354: 351-358
  • 22 Hämäläinen M, Korhonen R, Moilanen E. Calcineurin inhibitors down-regulate iNOS expression by destabilising mRNA. Int Immunopharmacol 2009; 9: 159-167
  • 23 Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15 N]nitrate in biological fluids. Anal Biochem 1982; 126: 131-138
  • 24 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254
  • 25 Levy DE, Darnell Jr. JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 2002; 3: 651-662
  • 26 Vallabhapurapu S, Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 2009; 27: 693-733
  • 27 Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol 2003; 225: 115-121
  • 28 Salvemini D, Wang ZQ, Wyatt PS, Bourdon DM, Marino MH, Manning PT, Currie MG. Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol 1996; 118: 829-838
  • 29 Handy RL, Moore PK. A comparison of the effects of L-NAME, 7-NI and L-NIL on carrageenan-induced hindpaw oedema and NOS activity. Br J Pharmacol 1998; 123: 1119-1126
  • 30 Hallinan EA, Tsymbalov S, Dorn CR, Pitzele BS, Hansen DW, Moore WM, Jerome GM, Connor JR, Branson LF, Widomski DL, Zhang Y, Currie MG, Manning PT. Synthesis and biological characterization of L–N6-(1-iminoethyl)lysine 5-tetrazole-amide, a prodrug of a selective iNOS inhibitor. J Med Chem 2002; 45: 1686-1689
  • 31 Vuolteenaho K, Moilanen T, Knowles RG, Moilanen E. The role of nitric oxide in osteoarthritis. Scand J Rheumatol 2007; 36: 247-258
  • 32 Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001; 2: 907-916
  • 33 Farlik M, Reutterer B, Schindler C, Greten F, Vogl C, Müller M, Decker T. Nonconventional initiation complex assembly by STAT and NF-κB transcription factors regulates nitric oxide synthase expression. Immunity 2010; 33: 25-34
  • 34 Sareila O, Korhonen R, Kärpänniemi O, Nieminen R, Kankaanranta H, Moilanen E. JAK inhibitors AG-490 and WHI-P154 decrease IFN-gamma-induced iNOS expression and NO production in macrophages. Mediators Inflamm 2006; 2006: 16161
  • 35 Ganster RW, Taylor BS, Shao L, Geller DA. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-κB. Proc Natl Acad Sci USA 2001; 98: 8638-8643
  • 36 Kleinert H, Wallerath T, Fritz G, Ihrig-Biedert I, Rodriguez-Pascual F, Geller DA, Förstermann U. Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAK-STAT, AP-1 and NF-kappaB-signaling pathways. Br J Pharmacol 1998; 125: 193-201
  • 37 Riendeau D, Percival MD, Brideau C, Charleson S, Dubé D, Ethier D, Falgueyret J-P, Friesen RW, Gordon R, Greig G, Guay J, Mancini J, Ouellet M, Wong E, Xu L, Boyce S, Visco D, Girard Y, Prasit P, Zamboni R, Rodger IW, Gresser M, Ford-Hutchinson AW, Young RN, Chan C-C. Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively inhibit cyclooxygenase-2. J Pharmacol Exp Ther 2001; 296: 558-566
  • 38 Zhang Y, Shaffer A, Portanova J, Seibert K, Isakson PC. Inhibition of cyclooxygenase-2 rapidly reverses inflammatory hyperalgesia and prostaglandin E2 production. J Pharmacol Exp Ther 1997; 283: 1069-1075
  • 39 Maini R, St Clair EW, Breedveld F, Furst D, Kalden J, Weisman M, Smolen J, Emery P, Harriman G, Feldmann M, Lipsky P. Infliximab (chimeric anti-tumour necrosis factor alpha monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. ATTRACT Study Group. Lancet 1999; 354: 1932-1939
  • 40 Moreland LW, Schiff MH, Baumgartner SW, Tindall EA, Fleischmann RM, Bulpitt KJ, Weaver AL, Keystone EC, Furst DE, Mease PJ, Ruderman EM, Horwitz DA, Arkfeld DG, Garrison L, Burge DJ, Blosch CM, Lange MLM, McDonnell ND, Weinblatt ME. Etanercept therapy in rheumatoid arthritis: a randomized, controlled trial. Ann Intern Med 1999; 130: 478-486
  • 41 Loram LC, Fuller A, Fick LG, Cartmell T, Poole S, Mitchell D. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J Pain 2007; 8: 127-136
  • 42 Rocha ACC, Fernandes ES, Quintão NLM, Campos MM, Calixto JB. Relevance of tumour necrosis factor-α for the inflammatory and nociceptive responses evoked by carrageenan in the mouse paw. Br J Pharmacol 2006; 148: 688-695