Arzneimittelforschung 2008; 58(11): 574-580
DOI: 10.1055/s-0031-1296559
Antidiabetics
Editio Cantor Verlag Aulendorf (Germany)

Effects of AVE2268, a Substituted Glycopyranoside, on Urinary Glucose Excretion and Blood Glucose in Mice and Rats

Martin Bickel
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Harm Brummerhop
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Wendelin Frick
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Heiner Glombik
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Andreas Waldemar Herling
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Hubert Otto Heuer
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Oliver Plettenburg
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Stefan Theis
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Ulrich Werner
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
,
Werner Kramer
Research & Development, TD Metabolism, Sanofi-Aventis, Frankfurt/Main, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
19 December 2011 (online)

Abstract

AVE2268, a substituted glycopyranoside, is an orally active and selective inhibitor of sodium-dependent glucose transporter 2 (SGLT2; IC50=13 nmol/L). Investigation of the pharmacological profile of AVE2268 on urinary glucose excretion (UGE) and blood glucose after glucose challenge (po or intraperitoneal) was performed in mice and rats. AVE2268 caused a dose-dependent increase of UGE in mice (ID30 = 79 ± 8.1 mg/kg p.o.) and rats (ID30 = 39.8 ± 4.0 mg/kg p.o.). AVE2268 in mice was more potent to decrease blood glucose ascent when glucose was given intraperitoneally (ID50 = 13.2 ± 3.9 mg/kg), compared to orally administered glucose (ID50 = 26.1 ± 3.9 mg/kg), showing that AVE2268 has no effects on SGLT 1 in the gut in vivo, which is in accordance with ist very low affinity to the SGLT 1 in vitro (IC50 >10,000 nmol/L). During an oral glucose tolerance test, AVE2268 dosedependently increased UGE, with subsequent decreases of AUC and blood glucose. A highly significant inverse correlation between AUC and UGE was found (p<0.001). The increase in UGE is linked to the inhibition of SGLT2 only. This profile renders AVE2268 as a new antidiabetic drug for the treatment of type 2 diabetes.

 
  • References

  • 1 Levetan C. Oral antidiabetic agents in type 2 diabetes. Curr Res Opin. 2007; 23: 945-952
  • 2 Garber AJ. Metformin and other biguanides: Pharmacology and therapeutical use. In DeFronzo RA, Ferrannini E, Keen H, Zimmet P. eds International Textbook of Diabetes mellitus. Chicester, UK: John Wiley & Son; 2004. p 851-870
  • 3 Reasner CA. Promising new approaches. Diabetes Obes Metab. 1990; 1 Suppl (1) 41-48
  • 4 Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs. 2005; 65: 385-411
  • 5 Bailey CJ. New drugs for the treatment of diabetes mellitus. In DeFronzo RA, Ferrannini E, Keen H, Zimmet P. eds International Textbook of Diabetes mellitus. Chicester, UK: John Wiley & Sons; 2004. p 951-980
  • 6 Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med. 2007; 261: 32-43
  • 7 Hediger MA, Kanai Y, You G, Nussberger S. Mammalian ion-coupled solute transporters. J Physiol. 1995; 482: 7S-17s
  • 8 Wright EM. Renal Na+-glucose transporters. Am J Physiol Renal Physiol. 2001; 280: F10-F18
  • 9 Kanai Y, Lee W, You G, Brown D, Hediger MA. The human kidney low affinity Na+/glucose transporter SGLT2: delineation of the major renal reabsorptive mechanism for Dglucose. J Clin Invest. 1995; 93: 397-404
  • 10 You G, Lee WS, Barros EJ, Kanai Y, Huo TL, Khawaja S et al. Molecular characteristics of Na(+)-coupled glucose transporters in adult and embryonic rat kidney. J Biol Chem. 1995; 270: 29365-29371
  • 11 Silverman M, Turner RJ. Glucose transport in the renal proximal tubule. In Windhager EE. ed Handbook of Physiology. Section 8: Renal Physiology. Vol. 2 Oxford, U.K.: Oxford University Press; 1992. p 2017-2038
  • 12 Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C et al. Glucose sensor hiding in a family of transporters. PNAS. 2003; 100: 11753-11758
  • 13 Diez-Sampedro A, Eskandari S, Wright EM, Hirayama BA. Na+-to-sugar stoichiometry of SGLT3. Am J Physiol Renal Physiol. 2001; 49: F278-F282
  • 14 Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987; 79: 1510-1515
  • 15 Blondel O, Bailbe D, Portha B. Insulin resistance in rats with non-insulin-dependent diabetes induced by neonatal (5 days) streptozotocin: evidence for reversal following phlorizin treatment. Metabolism. 1990; 39: 787-793
  • 16 Kahn BB, DeFronzo RA, Cushman SW, Rosetti L. Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J Clin Invest. 1991; 87: 561-570
  • 17 Ehrenkranz JRL, Lewis NG, Kahn CR, Roth J. Phlorizin: a review. Diabetes Metab Res Rev. 2005; 21: 31-38
  • 18 Wuethrich RF. The Urinary System. Chapter 19. In Krinke GJ. ed The Labaoratory Rat. New York: Academic Press; 2000. p 385-400
  • 19 Qi Z, Whitt I, Mehta A, Jin J, Zhao M, Harris CH et al Serial determination of glumerular filtration rate in conscious mice using FITC-inulin clearance. Am J Physiol Renal Physiol. 2004; 286: 590-595
  • 20 Hackbarth H, Buttner D, Gartner K. Intraspecies allometry: correlation between kidney weight and glomerular fitration rate vs. body weight. Am J Physiol Regul Intergr Comp Physiol. 1982; 242: 303-305
  • 21 Bibby MC, Loadman PM, Al-Ghabban A, Double JA. Influence of hydralazine on the pharmacokinetics of tauromustine (TCNU) in mice. Br J Cancer. 1992; 65: 347-350
  • 22 Luippold G, Beilharz M, Wehrmann M, Unger L, Gross G, Muhlbauer D. Effect of dopamine D3 receptor blockade on renal function and glomerular size in diabetic rats. Naunyn Schmiedebergs Arch Pharmacol. 2005; 371: 420-427
  • 23 Bergeron M, Scriver CR. Pathophysiology of renal hyeraminoacidurias and glucosuria. In Seldin D, Giebisch G. eds The Kidney, Physiology and Pathology. New York: Raven Press; 1985. p 1725-1745
  • 24 Oemar BS, Byrd J, Brodehl J. Complete absence of tubular glucose reabsorption: a new type of renal glucosuria (type 0). Clin Nephrol. 1987; 27: 150-160
  • 25 Elsas LJ, Rosenberg LE. Familial renal glucosuria: a genetic reapraisal of hexose transport by kidney and intestine. J Clin Invest. 1987; 48: 1845-1854
  • 26 Van den Heuvel LP, Assink K, Willemsen M, Monnens L. Autosomal recessive glucosuria attributable to a mutation in the sodium glucose cotransporter (SGLT2). Hum Genet. 2002; 111: 544-547
  • 27 Scholl-Burgi S, Santer R, Ehrich JHH. Long-term outcome of renal glucosuria type 0: the original patient and his natural history. Nephrol Dial Transplant. 2004; 19: 2394-2396