RSS-Feed abonnieren
DOI: 10.1055/s-0031-1291379
Thrombocytopenias Due to Gray Platelet Syndrome or THC2 Mutations
Publikationsverlauf
Publikationsdatum:
18. November 2011 (online)

ABSTRACT
Over the last two decades the genetic causes of several Mendelian platelet disorders have been elucidated, while the genetics of many other thrombocytopenic conditions are still unresolved. Among those are the gray platelet syndrome (GPS) and the thrombocytopenia linked to the THC2 locus on human chromosome 10p11–12. GPS is an α-granule defect associated with the development of myelofibrosis and mild to moderate thrombocytopenia. Most forms of GPS are autosomal recessive, and recently, the recessive form of the disease was mapped to chromosome 3p21. THC2-linked thrombocytopenia is an autosomal dominant disorder in which affected family members have a mild reduction in platelet counts and occasional bleeding. Platelets in THC2-linked thrombocytopenia appear to be normal in size and function although bone marrow morphology reveals a lack of mature, polyploid megakaryocytes. To date, mutations in three different genes within the THC2 locus have been associated with congenital thrombocytopenia, including a mutation in MASTL. In this article, we summarize the recent discoveries in these two forms of thrombocytopenia, including the functional data that support a role for MASTL kinase in thrombopoiesis.
KEYWORDS
Thrombocytopenia - gray platelet syndrome - THC2 - MASTL kinase - megakaryocyte development - ACBD5 - ANKRD26
REFERENCES
- 1
OMIM .
(Online Mendelian Inheritance in Man.
http://www.ncbi.nlm.nih.gov/omim
Accessed: 9 September 2011;
MissingFormLabel
- 2
Raccuglia G.
Gray platelet syndrome. A variety of qualitative platelet disorder.
Am J Med.
1971;
51
(6)
818-828
MissingFormLabel
- 3
Gerrard J M, Phillips D R, Rao G H et al..
Biochemical studies of two patients with the gray platelet syndrome. Selective deficiency
of platelet alpha granules.
J Clin Invest.
1980;
66
(1)
102-109
MissingFormLabel
- 4
White J G.
Ultrastructural studies of the gray platelet syndrome.
Am J Pathol.
1979;
95
(2)
445-462
MissingFormLabel
- 5
Nurden A T, Nurden P.
The gray platelet syndrome: clinical spectrum of the disease.
Blood Rev.
2007;
21
(1)
21-36
MissingFormLabel
- 6
Hayward C P, Weiss H J, Lages B et al..
The storage defects in grey platelet syndrome and alphadelta-storage pool deficiency
affect alpha-granule factor V and multimerin storage without altering their proteolytic
processing.
Br J Haematol.
2001;
113
(4)
871-877
MissingFormLabel
- 7
Breton-Gorius J, Vainchenker W, Nurden A, Levy-Toledano S, Caen J.
Defective alpha-granule production in megakaryocytes from gray platelet syndrome:
ultrastructural studies of bone marrow cells and megakaryocytes growing in culture
from blood precursors.
Am J Pathol.
1981;
102
(1)
10-19
MissingFormLabel
- 8
Drouin A, Favier R, Massé J M et al..
Newly recognized cellular abnormalities in the gray platelet syndrome.
Blood.
2001;
98
(5)
1382-1391
MissingFormLabel
- 9
Mitjavila M T, Vinci G, Villeval J L et al..
Human platelet alpha granules contain a nonspecific inhibitor of megakaryocyte colony
formation: its relationship to type beta transforming growth factor (TGF-beta).
J Cell Physiol.
1988;
134
(1)
93-100
MissingFormLabel
- 10
Rosa J P, George J N, Bainton D F, Nurden A T, Caen J P, McEver R P.
Gray platelet syndrome. Demonstration of alpha granule membranes that can fuse with
the cell surface.
J Clin Invest.
1987;
80
(4)
1138-1146
MissingFormLabel
- 11
Gebrane-Younès J, Cramer E M, Orcel L, Caen J P.
Gray platelet syndrome. Dissociation between abnormal sorting in megakaryocyte alpha-granules
and normal sorting in Weibel-Palade bodies of endothelial cells.
J Clin Invest.
1993;
92
(6)
3023-3028
MissingFormLabel
- 12
Falik-Zaccai T C, Anikster Y, Rivera C E et al..
A new genetic isolate of gray platelet syndrome (GPS): clinical, cellular, and hematologic
characteristics.
Mol Genet Metab.
2001;
74
(3)
303-313
MissingFormLabel
- 13
Gunay-Aygun M, Zivony-Elboum Y, Gumruk F et al..
Gray platelet syndrome: natural history of a large patient cohort and locus assignment
to chromosome 3p.
Blood.
2010;
116
(23)
4990-5001
MissingFormLabel
- 14
Lo B, Li L, Gissen P et al..
Requirement of VPS33B, a member of the Sec1/Munc18 protein family, in megakaryocyte
and platelet alpha-granule biogenesis.
Blood.
2005;
106
(13)
4159-4166
MissingFormLabel
- 15
White J G, Key N S, King R A, Vercellotti G M.
The White platelet syndrome: a new autosomal dominant platelet disorder.
Platelets.
2004;
15
(3)
173-184
MissingFormLabel
- 16
White J G.
Medich giant platelet disorder: a unique alpha granule deficiency I. Structural abnormalities.
Platelets.
2004;
15
(6)
345-353
MissingFormLabel
- 17
Kimura Y, Hart A, Hirashima M et al..
Zinc finger protein, Hzf, is required for megakaryocyte development and hemostasis.
J Exp Med.
2002;
195
(7)
941-952
MissingFormLabel
- 18
Detter J C, Zhang Q, Mules E H et al..
Rab geranylgeranyl transferase alpha mutation in the gunmetal mouse reduces Rab prenylation
and platelet synthesis.
Proc Natl Acad Sci U S A.
2000;
97
(8)
4144-4149
MissingFormLabel
- 19
Tiwari S, Italiano Jr J E, Barral D C et al..
A role for Rab27b in NF-E2-dependent pathways of platelet formation.
Blood.
2003;
102
(12)
3970-3979
MissingFormLabel
- 20
Balduini C L, De Candia E, Savoia A.
Why the disorder induced by GATA1 Arg216Gln mutation should be called “X-linked thrombocytopenia
with thalassemia” rather than “X-linked gray platelet syndrome”.
Blood.
2007;
110
(7)
2770-2771
author reply 2771
MissingFormLabel
- 21
Mori K, Suzuki S, Akutsu Y, Ishikawa M, Sakai H.
Gray platelet syndrome: relationship between morphological abnormality of the dense
tubular system (DTS) and intracellular Ca + + mobilization in the platelet.
Nippon Ketsueki Gakkai Zasshi.
1989;
52
(8)
1534-1541
MissingFormLabel
- 22
Tubman V N, Levine J E, Campagna D R et al..
X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation.
Blood.
2007;
109
(8)
3297-3299
MissingFormLabel
- 23
Oh J, Ho L, Ala-Mello S et al..
Mutation analysis of patients with Hermansky-Pudlak syndrome: a frameshift hot spot
in the HPS gene and apparent locus heterogeneity.
Am J Hum Genet.
1998;
62
(3)
593-598
MissingFormLabel
- 24
Bénit L, Cramer E M, Massé J M, Dusanter-Fourt I, Favier R.
Molecular study of the hematopoietic zinc finger gene in three unrelated families
with gray platelet syndrome.
J Thromb Haemost.
2005;
3
(9)
2077-2080
MissingFormLabel
- 25
Chiang A P, Beck J S, Yen H J et al..
Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as
a Bardet-Biedl syndrome gene (BBS11).
Proc Natl Acad Sci U S A.
2006;
103
(16)
6287-6292
MissingFormLabel
- 26
Walsh T, Shahin H, Elkan-Miller T et al..
Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity
protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82.
Am J Hum Genet.
2010;
87
(1)
90-94
MissingFormLabel
- 27
Fabbro S, Kahr W H, Hinckley J et al..
Homozygosity mapping with SNP arrays confirms 3p21 as a recessive locus for gray platelet
syndrome and narrows the interval significantly.
Blood.
2011;
117
(12)
3430-3434
MissingFormLabel
- 28
Lander E S, Botstein D.
Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children.
Science.
1987;
236
(4808)
1567-1570
MissingFormLabel
- 29
Alkan C, Sajjadian S, Eichler E E.
Limitations of next-generation genome sequence assembly.
Nat Methods.
2011;
8
(1)
61-65
MissingFormLabel
- 30
Iolascon A, Perrotta S, Amendola G et al..
Familial dominant thrombocytopenia: clinical, biologic, and molecular studies.
Pediatr Res.
1999;
46
(5)
548-552
MissingFormLabel
- 31
Bithell T C, Didisheim P, Cartwright G E, Wintrobe M M.
Thrombocytopenia inherited as an autosomal dominant trait.
Blood.
1965;
25
231-240
MissingFormLabel
- 32
Savoia A, Del Vecchio M, Totaro A et al..
An autosomal dominant thrombocytopenia gene maps to chromosomal region 10p.
Am J Hum Genet.
1999;
65
(5)
1401-1405
MissingFormLabel
- 33
Drachman J G, Jarvik G P, Mehaffey M G.
Autosomal dominant thrombocytopenia: incomplete megakaryocyte differentiation and
linkage to human chromosome 10.
Blood.
2000;
96
(1)
118-125
MissingFormLabel
- 34
Gandhi M J, Cummings C L, Drachman J G.
FLJ14813 missense mutation: a candidate for autosomal dominant thrombocytopenia on
human chromosome 10.
Hum Hered.
2003;
55
(1)
66-70
MissingFormLabel
- 35
Johnson H J, Gandhi M J, Shafizadeh E et al..
In vivo inactivation of MASTL kinase results in thrombocytopenia.
Exp Hematol.
2009;
37
(8)
901-908
MissingFormLabel
- 36
Woo A J, Moran T B, Schindler Y L et al..
Identification of ZBP-89 as a novel GATA-1-associated transcription factor involved
in megakaryocytic and erythroid development.
Mol Cell Biol.
2008;
28
(8)
2675-2689
MissingFormLabel
- 37
Amigo J D, Ackermann G E, Cope J J et al..
The role and regulation of friend of GATA-1 (FOG-1) during blood development in the
zebrafish.
Blood.
2009;
114
(21)
4654-4663
MissingFormLabel
- 38
VonDerLinden D, Ma X, Sandberg E M, Gernert K, Bernstein K E, Sayeski P P.
Mutation of glutamic acid residue 1046 abolishes Jak2 tyrosine kinase activity.
Mol Cell Biochem.
2002;
241
(1-2)
87-94
MissingFormLabel
- 39
Yu J, Fleming S L, Williams B et al..
Greatwall kinase: a nuclear protein required for proper chromosome condensation and
mitotic progression in Drosophila.
J Cell Biol.
2004;
164
(4)
487-492
MissingFormLabel
- 40
Yu J, Zhao Y, Li Z, Galas S, Goldberg M L.
Greatwall kinase participates in the Cdc2 autoregulatory loop in Xenopus egg extracts.
Mol Cell.
2006;
22
(1)
83-91
MissingFormLabel
- 41
Burgess A, Vigneron S, Brioudes E, Labbé J C, Lorca T, Castro A.
Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation
of the cyclin B-Cdc2/PP2A balance.
Proc Natl Acad Sci U S A.
2010;
107
(28)
12564-12569
MissingFormLabel
- 42
Lorca T, Bernis C, Vigneron S et al..
Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway
is required for metaphase II arrest and correct entry into the first embryonic cell
cycle.
J Cell Sci.
2010;
123
(Pt 13)
2281-2291
MissingFormLabel
- 43
Gharbi-Ayachi A, Labbé J C, Burgess A et al..
The substrate of Greatwall kinase, Arpp19, controls mitosis by inhibiting protein
phosphatase 2A.
Science.
2010;
330
(6011)
1673-1677
MissingFormLabel
- 44
Mochida S, Maslen S L, Skehel M, Hunt T.
Greatwall phosphorylates an inhibitor of protein phosphatase 2A that is essential
for mitosis.
Science.
2010;
330
(6011)
1670-1673
MissingFormLabel
- 45
Punzo F, Mientjes E J, Rohe C F et al..
A mutation in the acyl-coenzyme A binding domain-containing protein 5 gene (ACBD5 )
identified in autosomal dominant thrombocytopenia.
J Thromb Haemost.
2010;
8
(9)
2085-2087
MissingFormLabel
- 46
Pippucci T, Savoia A, Perrotta S et al..
Mutations in the 5′ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant
form of inherited thrombocytopenia, THC2.
Am J Hum Genet.
2011;
88
(1)
115-120
MissingFormLabel
- 47
Soupene E, Fyrst H, Kuypers F A.
Mammalian acyl-CoA:lysophosphatidylcholine acyltransferase enzymes.
Proc Natl Acad Sci U S A.
2008;
105
(1)
88-93
MissingFormLabel
- 48
Fan J, Liu J, Culty M, Papadopoulos V.
Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling
molecule.
Prog Lipid Res.
2010;
49
(3)
218-234
MissingFormLabel
- 49
Bera T K, Liu X F, Yamada M et al..
A model for obesity and gigantism due to disruption of the Ankrd26 gene.
Proc Natl Acad Sci U S A.
2008;
105
(1)
270-275
MissingFormLabel
- 50
Kahr W HA, Hinckley J, Li L et al..
Mutations in NBEAL2, encoding a BEACH protein, cause gray platelet syndrome.
Nat Genet.
2011;
43
(8)
738-740
MissingFormLabel
- 51
Gunay-Aygun M, Falik-Zaccai T C, Vilboux T et al..
NBEAL2 is mutated in gray platelet syndrome and is required for biogenesis of platelet
a-granules.
Nat Genet.
2011;
43
(8)
732-734
MissingFormLabel
- 52
Albers C A, Cvejic A, Favier R et al..
Exome sequencing identifies NBEAL2 as the causative gene for gray platelet syndrome.
Nat Genet.
2011;
43
(8)
735-737
MissingFormLabel
Jorge Di PaolaM.D.
Human Medical Genetics Program, University of Colorado, Denver, School of Medicine,
Mail Stop 8302, Building RC-1 North
12800 East 19th Avenue, P.O. Box 6511, Aurora, Colorado 80045
eMail: jorge.dipaola@ucdenver.edu