Neuropediatrics 2011; 42(03): 90-96
DOI: 10.1055/s-0031-1283157
Review Article
Georg Thieme Verlag Stuttgart · New york

Toward Multi-Scale Computational Modeling in Developmental Disability Research

O. Dammann
1   Floating Hospital for Children at Tufts Medical Center, Division of Newborn Medicine, Boston, Massachusetts, USA
2   Hannover Medical School, Department of Gynecology and Obstetrics, Perinatal Neuroepidemiology Unit, Hannover, Germany
,
P. Follett
3   Lewis Rhodes Labs, Inc., Acton, Massachusetts, USA
› Author Affiliations
Further Information

Publication History

received 17 February 2011

accepted 22 May 2011

Publication Date:
19 July 2011 (online)

Abstract

The field of theoretical neuroscience is gaining increasing recognition. Virtually all areas of neuroscience offer potential linkage points for computational work. In developmental neuroscience, main areas of research are neural development and connectivity, and connectionist modeling of cognitive development. In this paper, we suggest that computational models can be helpful tools for understanding the pathogenesis and consequences of perinatal brain damage and subsequent developmental disability. In particular, designing multi-scale computational models should be considered by developmental neuroscientists interested in helping reduce the risk for developmental disabilities.

 
  • References

  • 1 Abbott LF. Theoretical neuroscience rising. Neuron 2008; 60: 489-495
  • 2 Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008; 9: 341-355
  • 3 Aeschlimann A, Tettoni L. Biophysical model of axonal pathfinding. Neurocomputing 2001; 38–40: 87-92
  • 4 Ascoli GA. Progress and perspectives in computational neuroanatomy. Anat Rec 1999; 257: 195-207
  • 5 Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004; 5: 101-113
  • 6 Baughman FD, Thomas M. Specific impairments in cognitive development: a dynamical systems approach. In: Love BC, McRae K, Sloutsky VM. eds Proceedings of the 30th Annual Conference of the Cognitive Science Society. Austin: TX Cognitive Science Society; 2008: 1819-1824
  • 7 Bechtel W. Mental Mechanisms: Philosophical perspectives on Cognitive Neuroscience. New York: Routledge; 2008
  • 8 Berthiaume V, Shultz TR, Dammann O. White- and grey-matter damage differentially impair learning anf generalization in a computational model of the Raven matrices test. Proc Cogn Sci Soc in press
  • 9 Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 1982; 2: 32-48
  • 10 Birchmeier C. ErbB receptors and the development of the nervous system. Exp Cell Res 2009; 315: 611-618
  • 11 Birtwistle MR, Hatakeyama M, Yumoto N et al. Ligand-dependent responses of the ErbB signaling network: experimental and modeling analyses. Mol Syst Biol 2007; 3: 144
  • 12 Burns GA, Cheng WC. Tools for knowledge acquisition within the NeuroScholar system and their application to anatomical tract-tracing data. J Biomed Discov Collab 2006; 1: 10
  • 13 Butz M, Worgotter F, van Ooyen A. Activity-dependent structural plasticity. Brain Res Rev 2009; 60: 287
  • 14 Clermont G, Bartels J, Kumar R et al. In silico design of clinical trials: a method coming of age. Crit Care Med 2004; 32: 2061-2070
  • 15 Crasto CJ. ed Neuroinformatics. Totowa, NJ: Humana Press; 2007
  • 16 Cruse H. The explanatory power and limits of simulation models in the neurosciences. In: Machamer PK, Grush R, McLaughlin P. eds Theory and method in the neurosciences. Pittsburgh, PA: University of Pittsburgh Press; 2001
  • 17 Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr Res 1997; 42: 1-8
  • 18 Dammann O, Durum S, Leviton A. Do white cells matter in white matter damage?. Trends Neurosci 2001; 24: 320-324
  • 19 Dammann O, Hagberg H, Leviton A. Is periventricular leukomalacia an axonopathy as well as an oligopathy?. Pediatr Res 2001; 49: 453-457
  • 20 Dammann O, Kuban KC, Leviton A. Perinatal infection, fetal inflammatory response, white matter damage, and cognitive limitations in children born preterm. Ment Retard Dev Disabil Res Rev 2002; 8: 46-50
  • 21 Dammann O, Leviton A. Inflammatory brain damage in preterm newborns – dry numbers, wet lab, and causal inference. Early Hum Dev 2004; 79: 1-15
  • 22 Dammann O, Bueter W, Leviton A, Gressens P, Dammann CE. Neuregulin-1: a potential endogenous protector in perinatal brain white matter damage. Neonatology 2007; 93: 182-187
  • 23 Dammann O, Leviton A. Perinatal brain damage causation. Dev Neurosci 2007; 29: 280-288
  • 24 Dammann O, O’Shea TM. Cytokines and perinatal brain damage. Clin Perinatol 2008; 35: 643-663
  • 25 Dan Y, Poo MM. Spike timing-dependent plasticity: from synapse to perception. Physiol Rev 2006; 86: 1033-1048
  • 26 Dean JM, Farrag D, Zahkouk SA et al. Cerebellar white matter injury following systemic endotoxemia in preterm fetal sheep. Neuroscience 2009; 60: 606-615
  • 27 Di Filippo M, Sarchielli P, Picconi B et al. Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci 2008; 29: 402-412
  • 28 Dougherty JD, Geschwind DH. Progress in realizing the promise of microarrays in systems neurobiology. Neuron 2005; 45: 183-185
  • 29 Ferriero DM. Neonatal brain injury. N Engl J Med 2004; 351: 1985-1995
  • 30 Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci 2008; 31: 361-370
  • 31 Follett P, Follett DR, Roth C et al. Control theory-based model of synapse development and maintenance. in preparation
  • 32 Follett PL, Deng W, Dai W et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 2004; 24: 4412-4420
  • 33 Follett PL, Follett DR. Non-deterministic connectivity model supports critical role for deprivation in adaptive plasticity. In Online: Program No. 36.1. Abstract Viewer: Society for Neuroscience 2007
  • 34 Follett PL, Roth C, Follett DR et al. White matter damage impairs adaptive recovery more than cortical damage in an in-silico model of activity-dependent plasticity. J Child Neurol 2009; 24: 1205-1211
  • 35 Funahashi A, Tanimura N, Morohashi M et al. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 2003; 1
  • 36 Gardner D, Akil H, Ascoli GA et al. The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics 2008; 6: 149-160
  • 37 Gilles FH, Leviton A, Kerr CS. Endotoxin leucoencephalopathy in the telencephalon of the newborn kitten. J Neurol Sci 1976; 27: 183-191
  • 38 Graham BP, van Ooyen A. Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neurosci 2006; 7 (Suppl. 01) S9
  • 39 Hendriks BS, Cook J, Burke JM et al. Computational modelling of ErbB family phosphorylation dynamics in response to transforming growth factor alpha and heregulin indicates spatial compartmentation of phosphatase activity. Syst Biol (Stevenage) 2006; 153: 22-33
  • 40 Hentschel HG, Fine A. Diffusion-regulated control of cellular dendritic morphogenesis. Proc Biol Sci 1996; 263: 1-8
  • 41 Hoffmann I, Bueter W, Zscheppang K et al. Neuregulin-1, the fetal endothelium, and brain damage in preterm newborns. Brain Behav Immun 2009; 24: 784
  • 42 Hoppensteadt FC, Peskin CS. eds. Modeling and simulation in medicine and the life sciences. Berlin: Springer; 2002
  • 43 Infante-Duarte C, Waiczies S, Wuerfel J et al. New developments in understanding and treating neuroinflammation. J Mol Med 2008; 86: 975-985
  • 44 Karmiloff-Smith A. Development itself is the key to understanding developmental disorders. Trends Cog Sci 1998; 2: 389-398
  • 45 Karmiloff-Smith A. Atypical epigenesis. Develop Sci 2007; 10: 84-88
  • 46 Kitano H, Funahashi A, Matsuoka Y et al. Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 2005; 23: 961-966
  • 47 Kumar R, Clermont G, Vodovotz Y et al. The dynamics of acute inflammation. J Theor Biol 2004; 230: 145-155
  • 48 Larimer P, Strowbridge BW. Systems neuroscience: timing is everything. Nature 2007; 448: 652-654
  • 49 Le Novère N. The long journey to a Systems Biology of neuronal function. BMC Syst Biol 2007; 1: 28
  • 50 Leviton A, Gilles FH. An epidemiologic study of perinatal telencephalic leucoencephalopathy in an autopsy population. J Neurol Sci 1973; 18: 53-66
  • 51 Leviton A. Preterm birth and cerebral palsy: is tumor necrosis factor the missing link?. Dev Med Child Neurol 1993; 35: 553-558
  • 52 Leviton A, Gressens P. Neuronal damage accompanies perinatal white-matter damage. Trends Neurosci 2007; 30: 473-478
  • 53 Malaeb S, Dammann O. Fetal inflammatory response and brain injury in the preterm newborn. J Child Neurol 2009; 24: 1119-1126
  • 54 Markram H. The blue brain project. Nat Rev Neurosci 2006; 7: 153-160
  • 55 McClelland JL. The place of modelling in cognitive science. Topics in Cognitive Science 2009; 1: 11-38
  • 56 Mei L, Xiong WC. Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008; 9: 437-452
  • 57 Mogilner A, Wollman R, Marshall WF. Quantitative modeling in cell biology: what is it good for?. Dev Cell 2006; 11: 279-287
  • 58 Munakata Y, Casey BJ, Diamond A. Developmental cognitive neuroscience: progress and potential. Trends Cogn Sci 2004; 8: 122-128
  • 59 Noorbakhsh F, Overall CM, Power C. Deciphering complex mechanisms in neurodegenerative diseases: the advent of systems biology. Trends Neurosci 2009; 32: 88-100
  • 60 Oda K, Matsuoka Y, Funahashi A et al. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005; 1 (2005) 0010
  • 61 Oliver A, Johnson MH, Karmiloff-Smith A et al. Deviations in the emergence of representations: a neuroconstructivist framework for analysing developmental disorders. Dev Sci 2000; 3: 1-40
  • 62 Pinker S. Out of the minds of babes. Science 1999; 283: 40-41
  • 63 Rosenblueth A, Wiener N. The role of models in science. Philos Sci 1945; 12: 316-321
  • 64 Schlesinger M, Amso D, Johnson SP. The neural basis for visual selective attention in young infants: a computational account. Adaptive Behavior 2007; 15: 135-148
  • 65 Sejnowski TJ, Koch C, Churchland PS. Computational neuroscience. Science 1988; 241: 1299-1306
  • 66 Shultz TR. Computational developmental psychology. Cambridge, MA: MIT Press; 2003
  • 67 Southern J, Pitt-Francis J, Whiteley J et al. Multi-scale computational modelling in biology and physiology. Prog Biophys Mol Biol 2008; 96: 60-89
  • 68 Stanley F, Blair E, Alberman E. Cerebral palsies: epidemiology & causal pathways. London: Mac Keith; 2000
  • 69 Stephens BE, Vohr BR. Neurodevelopmental outcome of the premature infant. Pediatr Clin North Am 2009; 56: 631-646
  • 70 Talmage DA. Mechanisms of neuregulin action. Novartis Found Symp 2008; 289: 74-84 discussion 84–93
  • 71 Thomas M, Karmiloff-Smith A. Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling. Behav Brain Sci 2002; 25: 727-750 ; discussion 750-787
  • 72 Thomas MSC. Multiple causality in developmental disorders: methodological implications from computational modelling. Dev Sci 2003; 3: 537-556
  • 73 Van Horn JD, Ishai A. Mapping the human brain: new insights from FMRI data sharing. Neuroinformatics 2007; 5: 146-153
  • 74 van Ooyen A. Competition in the development of nerve connections: a review of models. Network 2001; 12: R1-R47
  • 75 Van Ooyen A. ed Modeling neural development. Cambridge: MIT Press; 2003
  • 76 Vasalou C, Henson MA. A multiscale model to investigate circadian rhythmicity of pacemaker neurons in the suprachiasmatic nucleus. PLoS Comput Biol 6 e1000706
  • 77 Villoslada P, Steinman L, Baranzini SE. Systems biology and its application to the understanding of neurological diseases. Ann Neurol 2009; 65: 124-139
  • 78 Vodovotz Y, Clermont G, Chow C et al. Mathematical models of the acute inflammatory response. Curr Opin Crit Care 2004; 10: 383-390
  • 79 Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 2009; 8: 110-124
  • 80 Westermann G, Sirois S, Shultz TR et al. Modeling developmental cognitive neuroscience. Trends Cogn Sci 2006; 10: 227-232
  • 81 Wiley HS, Shvartsman SY, Lauffenburger DA. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol 2003; 13: 43-50