Subscribe to RSS
DOI: 10.1055/s-0031-1281742
© Georg Thieme Verlag KG Stuttgart · New York
Magnetization Transfer in Human Achilles Tendon Assessed by a 3D Ultrashort Echo Time Sequence: Quantitative Examinations in Healthy Volunteers at 3T
Magnetisierungstransfer bei humanen Achillessehnen mittels einer 3-D-Ultrashort-Echo-Time-Sequenz: Quantitative Auswertung von gesunden Probanden bei 3TPublication History
received: 16.5.2011
accepted: 21.8.2011
Publication Date:
10 October 2011 (online)

Zusammenfassung
Ziel: Magnetisierungstransfer-Kontrast(MTC)-Bildgebung ermöglicht die Einsicht in die Interaktionen zwischen freiem und gebundenem Wasser. Neu entwickelte Ultrashort-echo-time(UTE)-Sequenzen für Ganzkörper-MRT erlauben MTC-Bildgebung in Gewebearten mit extrem schnellem Signalzerfall, wie Sehnen. Ziel dieser Studie war die Entwicklung einer Methodik, die es erlaubt, den MT-Effekt gesunder Achillessehnen in vivo bei 3 T quantitativ zu bestimmen. Material und Methoden: 16 gesunde Sehnen von Probanden ohne anamnestische Tendinopathie wurden mit einer 3-D-UTE-Sequenz mit einem rechteckförmigen On-Resonanz-Anregepuls und einem Fermi-förmigen Off-Resonanz-MT-Präparationspuls untersucht. Die Frequenz des MT-Pulses variierte von 1 bis 5 kHz. MT-Effekte wurden als MT-Ratio (MTR) zwischen Messungen mit und ohne MT-Präparation berechnet. Direkte Sättigungseffekte der MT-Präparation auf die Signalintensität wurden mit numerischen Simulationen der Blochgleichungen ermittelt. Ein Patient mit Tendinopathie wurde untersucht, um beispielhaft zu zeigen, wie sich die MTR verändert. Ergebnisse: Die Berechnung von MTR-Daten war in allen Fällen möglich und zeigte für die gesunden Probanden einen Abfall von 0,53 ± 0,05 auf 0,25 ± 0,03 (1 kHz bis 5 kHz). Die Untersuchung der Varianz bezüglich Geschlecht und Knöcheldominanz ergab keine signifikanten Differenz (p > 0,05). Hingegen zeigte der Tendinosepatient MTR-Werte zwischen 0,36 (1 kHz) und 0,19 (5 kHz). Schlussfolgerung: MT-Effekte in menschlichen Achillessehnen können zuverlässig in vivo mittels einer 3-D-UTE-Sequenz bei 3 T gemessen werden. Alle gesunden Sehnen zeigten ähnliche MTR-Werte (Variationskoeffizient 10,0 ± 1,2 %). Die untersuchten degenerierten Sehnen zeigten vermutlich aufgrund der veränderten Mikrostruktur bei Tendinopathie einen deutlich unterschiedlichen MT-Effekt.
Abstract
Purpose: Magnetization transfer contrast (MTC) imaging provides insight into interactions between free and bounded water. Newly developed ultrashort echo time (UTE) sequences implemented on whole-body magnetic resonance (MR) scanners allow MTC imaging in tissues with extremely fast signal decay such as tendons. The aim of this study was to develop a technique for the quantification of the MT effect in healthy Achilles tendons in-vivo at 3 Tesla. Materials and Methods: 16 normal tendons of volunteers with no history of tendinopathy were examined using a 3D-UTE sequence with a rectangular on-resonant excitation pulse and a Fermi-shaped off-resonant MT preparation pulse. The frequency of the MT pulse was varied from 1 to 5 kHz. MT effects were calculated in terms of the MT ratio (MTR) between measurements without and with MT preparation. Direct saturation effects of MT preparation on the signal intensity were evaluated using numerical simulation of Bloch equations. One patient with tendinopathy was examined to exemplarily show changes of MTR under pathologic conditions. Results: Calculation of MTR data was feasible in all examined tendons and showed a decrease from 0.53 ± 0.05 to 0.25 ± 0.03 (1 kHz to 5 kHz) for healthy volunteers. Evaluation of variation with gender and dominance of ankle revealed no significant differences (p > 0.05). In contrast, the patient with confirmed tendinopathy showed MTR values between 0.36 (1 kHz) and 0.19 (5 kHz). Conclusion: MT effects in human Achilles tendons can be reliably assessed in-vivo using a 3D UTE sequence at 3 T. All healthy tendons showed similar MTR values (coefficient of variation 10.0 ± 1.2 %). The examined patient showed a clearly different MT effect revealing a changed microstructure in the case of tendinopathy.
Key words
ankle - tendons - MR imaging - tissue characterization - magnetization transfer
References
- 1
Wolff S D, Balaban R S.
Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo.
Magn Reson Med.
1989;
10
135-144
MissingFormLabel
- 2
Balaban R S, Ceckler T L.
Magnetization transfer contrast in magnetic resonance imaging.
Magn Reson Q.
1992;
8
116-137
MissingFormLabel
- 3
Vahlensieck M, Traber F, Schild H.
Magnetization transfer contrast imaging (MTC): its fundamentals, technics and applications
[Review].
Fortschr Röntgenstr.
1998;
169
3-10
MissingFormLabel
- 4
Henkelman R M, Stanisz G J, Graham S J.
Magnetization transfer in MRI: a review.
NMR Biomed.
2001;
14
57-64
MissingFormLabel
- 5
Petrella J R, Grossman R I, McGowan J C et al.
Multiple sclerosis lesions: relationship between MR enhancement pattern and magnetization
transfer effect.
AJNR Am J Neuroradiol.
1996;
17
1041-1049
MissingFormLabel
- 6
Runge V M, Wells J W, Williams N M et al.
Detectability of early brain meningitis with magnetic resonance imaging.
Invest Radiol.
1995;
30
484-495
MissingFormLabel
- 7
Schick F, Stern W, Forster J et al.
Magnetization transfer contrast of hepatic lesions in breath-hold gradient-echo images
of different T 1 weighting.
J Magn Reson Imaging.
1997;
7
280-285
MissingFormLabel
- 8
Vahlensieck M, Gieseke J, Traber F et al.
Magnetization transfer contrast (MTC) – which is the most MTC-sensitive MRI sequence?.
Fortschr Röntgenstr.
1998;
169
195-197
MissingFormLabel
- 9
Horng A, Raya J, Zscharn M et al.
Locoregional deformation pattern of the patellar cartilage after different loading
types – high-resolution 3D-MRI volumetry at 3T in-vivo.
Fortschr Röntgenstr.
2011;
183
432-440
MissingFormLabel
- 10
Du J, Pak B C, Znamirowski R et al.
Magic angle effect in magnetic resonance imaging of the Achilles tendon and enthesis.
Magn Reson Imaging.
2009;
27
557-564
MissingFormLabel
- 11
Hayes C W, Parellada J A.
The magic angle effect in musculoskeletal MR imaging.
Top Magn Reson Imaging.
1996;
8
51-56
MissingFormLabel
- 12
Li T, Mirowitz S A.
Manifestation of magic angle phenomenon: comparative study on effects of varying echo
time and tendon orientation among various MR sequences.
Magn Reson Imaging.
2003;
21
741-744
MissingFormLabel
- 13
Du J, Chiang A J, Chung C B et al.
Orientational analysis of the Achilles tendon and enthesis using an ultrashort echo
time spectroscopic imaging sequence.
Magn Reson Imaging.
2009;
28
178-184
MissingFormLabel
- 14
Gatehouse P D, Thomas R W, Robson M D et al.
Magnetic resonance imaging of the knee with ultrashort TE pulse sequences.
Magn Reson Imaging.
2004;
22
1061-1067
MissingFormLabel
- 15
Robson M D, Bydder G M.
Clinical ultrashort echo time imaging of bone and other connective tissues.
NMR Biomed.
2006;
19
765-780
MissingFormLabel
- 16
Robson M D, Gatehouse P D, Bydder M et al.
Magnetic resonance: an introduction to ultrashort TE (UTE) imaging.
J Comput Assist Tomogr.
2003;
27
825-846
MissingFormLabel
- 17
Adler R S, Swanson S D, Doi K et al.
The effect of magnetization transfer in meniscal fibrocartilage.
Magn Reson Med.
1996;
35
591-595
MissingFormLabel
- 18
Paavola M, Kannus P, Jarvinen T A et al.
Achilles tendinopathy.
J Bone Joint Surg Am.
2002;
84-A
2062-2076
MissingFormLabel
- 19
Riley G.
The pathogenesis of tendinopathy. A molecular perspective.
Rheumatology.
2004;
43
131-142
MissingFormLabel
- 20
Ceckler T L, Balaban R S.
Field dispersion in water-macromolecular proton magnetization transfer.
J Magn Reson B.
1994;
105
242-248
MissingFormLabel
- 21
Springer F, Martirosian P, Machann J et al.
Magnetization transfer contrast imaging in bovine and human cortical bone applying
an ultrashort echo time sequence at 3 Tesla.
Magn Reson Med.
2009;
61
1040-1048
MissingFormLabel
- 22
Astrom M, Gentz C F, Nilsson P et al.
Imaging in chronic achilles tendinopathy: a comparison of ultrasonography, magnetic
resonance imaging and surgical findings in 27 histologically verified cases.
Skeletal Radiol.
1996;
25
615-620
MissingFormLabel
- 23
Fornage B D, Rifkin M D.
Ultrasound examination of tendons.
Radiol Clin North Am.
1988;
26
87-107
MissingFormLabel
- 24
Gibbon W W, Cooper J R, Radcliffe G S.
Distribution of sonographically detected tendon abnormalities in patients with a clinical
diagnosis of chronic achilles tendinosis.
J Clin Ultrasound.
2000;
28
61-66
MissingFormLabel
- 25
Grassi W, Filippucci E, Farina A et al.
Sonographic imaging of tendons.
Arthritis Rheum.
2000;
43
969-976
MissingFormLabel
- 26
Hartgerink P, Fessell D P, Jacobson J A et al.
Full- versus partial-thickness Achilles tendon tears: sonographic accuracy and characterization
in 26 cases with surgical correlation.
Radiology.
2001;
220
406-412
MissingFormLabel
- 27
Maffulli N.
Rupture of the Achilles tendon.
J Bone Joint Surg Am.
1999;
81
1019-1036
MissingFormLabel
- 28
Maffulli N, Waterston S W, Squair J et al.
Changing incidence of Achilles tendon rupture in Scotland: a 15-year study.
Clin J Sport Med.
1999;
9
157-160
MissingFormLabel
- 29
Pang B S, Ying M.
Sonographic measurement of achilles tendons in asymptomatic subjects: variation with
age, body height, and dominance of ankle.
J Ultrasound Med.
2006;
25
1291-1296
MissingFormLabel
- 30
Halasi T, Kynsburg A, Tallay A et al.
Development of a new activity score for the evaluation of ankle instability.
Am J Sports Med.
2004;
32
899-908
MissingFormLabel
- 31
Chen T M, Rozen W M, Pan W R et al.
The arterial anatomy of the Achilles tendon: anatomical study and clinical implications.
Clin Anat.
2009;
22
377-385
MissingFormLabel
- 32
Ohberg L, Lorentzon R, Alfredson H.
Eccentric training in patients with chronic Achilles tendinosis: normalised tendon
structure and decreased thickness at follow up.
Br J Sports Med.
2004;
38
8-11
; discussion
MissingFormLabel
- 33
Springer F, Steidle G, Martirosian P et al.
Effects of in-pulse transverse relaxation in 3D ultrashort echo time sequences: analytical
derivation, comparison to numerical simulation and experimental application at 3 T.
J Magn Reson.
2010;
206
88-96
MissingFormLabel
- 34
Oatridge A, Herlihy A H, Thomas R W et al.
Magnetic resonance: magic angle imaging of the Achilles tendon.
Lancet.
2001;
358
1610-1611
MissingFormLabel
- 35
Allen G M, Wilson D J.
Ultrasound in sports medicine – a critical evaluation.
Eur J Radiol.
2007;
62
79-85
MissingFormLabel
- 36
Khan K M, Forster B B, Robinson J et al.
Are ultrasound and magnetic resonance imaging of value in assessment of Achilles tendon
disorders? A two year prospective study.
Br J Sports Med.
2003;
37
149-153
MissingFormLabel
- 37
Weber C, Wedegartner U, Maas L C et al.
MR Imaging of the Achilles Tendon: Evaluation of Criteria for the Differentiation
of Asymptomatic and Symptomatic Tendons.
Fortschr Röntgenstr.
2011;
183
631-640
MissingFormLabel
- 38
Rominger M B, Bachmann G, Schulte S et al.
Value of ultrasound and magnetic resonance imaging in the control of the postoperative
progress after Achilles tendon rupture.
Fortschr Röntgenstr.
1998;
168
27-35
MissingFormLabel
- 39
Rees J D, Wilson A M, Wolman R L.
Current concepts in the management of tendon disorders.
Rheumatology.
2006;
45
508-521
MissingFormLabel
- 40
Emerson C, Morrissey D, Perry M et al.
Ultrasonographically detected changes in Achilles tendons and self reported symptoms
in elite gymnasts compared with controls – an observational study.
Man.
Ther;
15
37-42
MissingFormLabel
- 41
Fahlstrom M, Alfredson H.
Ultrasound and Doppler findings in the Achilles tendon among middle-aged recreational
floor-ball players in direct relation to a match.
Br J Sports Med.
2010;
44
140-143
MissingFormLabel
- 42
Fredberg U, Bolvig L, Andersen N T.
Prophylactic training in asymptomatic soccer players with ultrasonographic abnormalities
in Achilles and patellar tendons: the Danish Super League Study.
Am J Sports Med.
2008;
36
451-460
MissingFormLabel
- 43
Syha R, Peters M, Birnesser H et al.
Computer-based quantification of the mean Achilles tendon thickness in ultrasound
images: effect of tendinosis.
Br J Sports Med.
2007;
41
897-902
; discussion
MissingFormLabel
- 44
Du J, Carl M, Diaz E et al.
Ultrashort TE T 1rho (UTE T 1rho) imaging of the Achilles tendon and meniscus.
Magn Reson Med.
2010;
64
834-842
MissingFormLabel
- 45
Hodgson R J, Evans R, Wright P et al.
Quantitative magnetization transfer ultrashort echo time imaging of the Achilles tendon.
Magn Reson Med.
2011;
65
1372-1376
MissingFormLabel
- 46
Kallinen M, Suominen H.
Ultrasonographic measurements of the Achilles tendon in elderly athletes and sedentary
men.
Acta Radiol.
1994;
35
560-563
MissingFormLabel
- 47
Cook J L, Bass S L, Black J E.
Hormone therapy is associated with smaller Achilles tendon diameter in active post-menopausal
women.
Scand J Med Sci Sports.
2007;
17
128-132
MissingFormLabel
- 48
Tumia N, Kader D, Arena B et al.
Achilles tendinopathy during pregnancy.
Clin J Sport Med.
2002;
12
43-45
MissingFormLabel
Dr. Roland Syha
Diagnostic and Interventional Radiology, Eberhard-Karls-University
Hoppe-Seyler-Str. 3
72076 Tübingen
Germany
Phone: ++ 49/70 71/2 98 04 95
Fax: ++ 49/70 71/29 46 38
Email: roland.syha@gmx.net