Zusammenfassung
Die tiefe Hirnstimulation (THS) hat die Grenzen der Behandlungsmöglichkeiten einiger,
vermeintlich therapieresistenter, neuropsychiatrischer Erkrankungen erfolgreich erweitert.
Vor diesem Hintergrund werden immer mehr psychische Störungen im Stadium der Therapieresistenz
als mögliche Indikationen der THS erwogen. Mittlerweile ist auch die Schizophrenie
in den Fokus des Interesses gelangt. Diese, wie alle anderen potenziellen psychiatrischen
Indikationen, bedürfen der kritischen Prüfung, ob der aktuelle Wissensstand in Hinblick
auf die propagierten Wirkmechanismen der THS und die angenommene Pathophysiologie
der Erkrankung einen Einsatz des Verfahrens rechtfertigen. Die vorliegende Arbeit
betrachtet synoptisch die aktuellen Ansätze, die einen THS-Einsatz begründen könnten,
und diskutiert die Übertragbarkeit bisheriger THS-Anwendungen, Studienergebnisse zur
dopaminergen Transmission und zu neuronalen Oszillationen sowie tierexperimentelle
Daten. In der Zusammenschau ist die aktuelle Datenlage durchaus zukunftsweisend für
einige Symptome der Schizophrenie, rechtfertigt zum gegenwärtigen Zeitpunkt jedoch
womöglich noch nicht den klinischen Einsatz der THS in der Behandlung. Vordringliche
Aufgabe ist der Schluss bis dato bestehender Wissenslücken, um indikationsbegründende
Hypothesen mit möglichst geringem Spekulationscharakter generieren zu können.
Abstract
Deep brain stimulation (DBS) has successfully advanced our treatment options for putative
therapy-resistant neuropsychiatric diseases. Building on this strong foundation, more
and more mental disorders in the stadium of therapy-resistance are considered as possible
indications for DBS. Especially, schizophrenia with its associated severe and difficult
to treat symptoms is gaining attention. This attention demands critical questions
regarding the assumed mechanisms of DBS and its possible influence on the supposed
pathophysiology of schizophrenia. Here, we synoptically compare current approaches
and theories of DBS and discuss the feasibility of DBS in schizophrenia as well as
the transferability from other psychiatric disorders successfully treated with DBS.
For this we consider recent advances in animal models of schizophrenic symptoms, results
regarding the influence of DBS on dopaminergic transmission as well as data concerning
neural oscillation and synchronisation. In conclusion, the use of DBS for some symptoms
of schizophrenia seems to be a promising approach, but the lack of a comprehensive
theory of the mechanisms of DBS as well as its impact on schizophrenia might hinder
the use of DBS for schizophrenia at this point in time.
Schlüsselwörter
Tiefe Hirnstimulation - Schizophrenie - Translationale Medizin - Neuronale Oszillationen
Keywords
deep brain stimulation - schizophrenia - translational medicine - neural oscillations
Literatur
1
Benabid A L, Pollak P, Louveau A et al.
Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus
for bilateral Parkinson disease.
Appl Neurophysiol.
1987;
50 (1 – 6)
344-346
2
Deuschl G, Schade-Brittinger C, Krack P et al.
A randomized trial of deep-brain stimulation for Parkinson’s disease.
N Engl J Med.
2006;
355 (9)
896-908
3
Kupsch A, Benecke R, Muller J et al.
Pallidal deep-brain stimulation in primary generalized or segmental dystonia.
N Engl J Med.
2006;
355 (19)
1978-1990
4
Schuurman P R, Bosch D A, Bossuyt P M et al.
A comparison of continuous thalamic stimulation and thalamotomy for suppression of
severe tremor.
N Engl J Med.
2000;
342 (7)
461-468
5
Deuschl G, Schade-Brittinger C, Krack P et al.
A randomized trial of deep-brain stimulation for Parkinson’s disease.
The New England journal of medicine.
2006;
355 (9)
896-908
6
Skuban T, Flohrer, Klosterkoetter J et al.
Psychiatrische Nebenwirkungen der tiefen Hirnstimulation bei M. Parkinson.
submitted
7
Nuttin B, Cosyns P, Demeulemeester H et al.
Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive
disorder.
Lancet.
1999;
354 (9189)
1526
8
Vandewalle V, Linden van der C, Groenewegen H J et al.
Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation
of thalamus.
Lancet.
1999;
353 (9154)
724
9
Kuhn J, Gründler T OJ, Lenartz D et al.
Deep brain stimulation for psychiatric disorders.
Dtsch Arztebl Int.
2010;
107 (7)
105-113
10
Kuhn J, Gründler T OJ, Bauer R et al.
Observations on cognitive control during successful deep brain stimulation of the
nucleus accumbens in severe alcohol dependence.
submitted
11
Kuhn J, Lenartz D, Huff W et al.
Remission of alcohol dependency following deep brain stimulation of the nucleus accumbens:
valuable therapeutic implications?.
J Neurol Neurosurg Psychiatry.
2007;
78 (10)
1152-1153
12
Laxton A W, Tang-Wai D F, McAndrews M P et al.
A phase I trial of deep brain stimulation of memory circuits in Alzheimer’s disease.
Ann Neurol.
2010;
68 (4)
521-534
13
Huys D, Möller M, Kim E et al.
Die historischen Grundlagen der tiefen Hirnstimulation bei psychiatrischen Erkrankungen.
Nervenarzt.
2011 Aug 25 [Epub ahead of print]
14
Trottenberg T, Volkmann J, Deuschl G et al.
Treatment of severe tardive dystonia with pallidal deep brain stimulation.
Neurology.
2005;
64 (2)
344-346
15
Damier P, Thobois S, Witjas T et al.
Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia.
Archives of general psychiatry.
2007;
64 (2)
170-176
16
Cipriani A, Boso M, Barbui C.
Clozapine combined with different antipsychotic drugs for treatment resistant schizophrenia.
Cochrane database of systematic reviews.
2009;
3
CD006324
17
Kirkpatrick B, Fenton W S, Carpenter W T et al.
The NIMH-MATRICS consensus statement on negative symptoms.
Schizophrenia bulletin.
2006;
32 (2)
214-219
18
Os van J, Kapur Jr S.
Schizophrenia.
Lancet.
2009;
374 (9690)
635-645
19
Wittchen H U, Essau C A, Zerssen von D et al.
Lifetime and six-month prevalence of mental disorders in the Munich Follow-Up Study.
European archives of psychiatry and clinical neuroscience.
1992;
241 (4)
247-258
20
Perala J, Suvisaari J, Saarni S I et al.
Lifetime prevalence of psychotic and bipolar I disorders in a general population.
Archives of general psychiatry.
2007;
64 (1)
19-28
21
Skantze K.
Subjective quality of life and standard of living: a 10-year follow-up of out-patients
with schizophrenia.
Acta psychiatrica Scandinavica.
1998;
98 (5)
390-399
22
Pinikahana J, Happell B, Hope J et al.
Quality of life in schizophrenia: a review of the literature from 1995 to 2000.
International journal of mental health nursing.
2002;
11 (2)
103-111
23 Castle D J, Morgan V. Epidemiology. In: Mueser K T, Jeste D V, eds Clinical handbook
of schizophrenia. New York: The Guilford Press; 2008: 14-24
24
Andreasen N C, Carpenter Jr W T, Kane J M et al.
Remission in schizophrenia: proposed criteria and rationale for consensus.
The American journal of psychiatry.
2005;
162 (3)
441-449
25
Lambert M, Karow A, Leucht S et al.
Remission in schizophrenia: validity, frequency, predictors, and patients’ perspective
5 years later.
Dialogues in clinical neuroscience.
2010;
12 (3)
393-407
26
Krack P, Batir A, Van Blercom N et al.
Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced
Parkinson’s disease.
The New England journal of medicine.
2003;
349 (20)
1925-1934
27
Oh M Y, Abosch A, Kim S H et al.
Long-term hardware-related complications of deep brain stimulation.
Neurosurgery.
2002;
50 (6)
1268-1274
; discussion 1274 – 1276
28
Müller S, Christen M.
Deep Brain Stimulation in Parkinsonian Patients – Ethical Evaluation of Cognitive,
Affective, and Behavioral Sequelae.
AJOB Neuroscience.
2011;
2 (1)
3-13
29
McIntyre C C, Savasta M, Kerkerian-Le Goff L et al.
Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition,
or both.
Clin Neurophysiol.
2004;
115 (6)
1239-1248
30
Dostrovsky J O, Levy R, Wu J P et al.
Microstimulation-induced inhibition of neuronal firing in human globus pallidus.
J Neurophysiol.
2000;
84 (1)
570-574
31
Beurrier C, Bioulac B, Audin J et al.
High-frequency stimulation produces a transient blockade of voltage-gated currents
in subthalamic neurons.
J Neurophysiol.
2001;
85 (4)
1351-1356
32
Leiphart J W, Valone3 rd F H.
Stereotactic lesions for the treatment of psychiatric disorders.
J Neurosurg.
2010;
113 (6)
1204-1211
33
Ridding M C, Rothwell J C.
Is there a future for therapeutic use of transcranial magnetic stimulation?.
Nat Rev Neurosci.
2007;
8 (7)
559-567
34
Pascual-Leone A, Bartres-Faz D, Keenan J P.
Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction
of ‘virtual lesions’.
Philos Trans R Soc Lond B Biol Sci.
1999;
354 (1387)
1229-1238
35
Jandl M.
The use of repetitive transcranial magnetic stimulation (rTMS) in auditory verbal
hallucinations (AVH).
Fortschr Neurol Psychiatr.
2010;
78 (11)
632-643
36
Aleman A, Sommer I E, Kahn R S.
Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of
resistant auditory hallucinations in schizophrenia: a meta-analysis.
The Journal of clinical psychiatry.
2007;
68 (3)
416-421
37
Slotema C W, Blom J D, Hoek H W et al.
Should we expand the toolbox of psychiatric treatment methods to include Repetitive
Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS
in psychiatric disorders.
The Journal of clinical psychiatry.
2010;
71 (7)
873-884
38
Slotema C W, Blom J D, Weijer A D et al.
Can low-frequency repetitive transcranial magnetic stimulation really relieve medication-resistant
auditory verbal hallucinations? Negative results from a large randomized controlled
trial.
Biological psychiatry.
2011;
69 (5)
450-456
39
Payne N A, Prudic de J.
Electroconvulsive therapy: Part I. A perspective on the evolution and current practice
of ECT.
Journal of psychiatric practice.
2009;
15 (5)
346-368
40
Kato N.
Neurophysiological mechanisms of electroconvulsive therapy for depression.
Neuroscience research.
2009;
64 (1)
3-11
41
Daniels J.
Catatonia: clinical aspects and neurobiological correlates.
The Journal of neuropsychiatry and clinical neurosciences.
2009;
21 (4)
371-380
42
Sanacora G, Mason G F, Rothman D L et al.
Increased cortical GABA concentrations in depressed patients receiving ECT.
The American journal of psychiatry.
2003;
160 (3)
577-579
43
Northoff G.
What catatonia can tell us about „top-down modulation“: a neuropsychiatric hypothesis.
The Behavioral and brain sciences.
2002;
25 (5)
555-577
; discussion 578 – 604
44
Mikell C B, McKhann G M, Segal S et al.
The hippocampus and nucleus accumbens as potential therapeutic targets for neurosurgical
intervention in schizophrenia.
Stereotact Funct Neurosurg.
2009;
87 (4)
256-265
45
Kapur S.
Psychosis as a state of aberrant salience: a framework linking biology, phenomenology,
and pharmacology in schizophrenia.
Am J Psychiatry.
2003;
160 (1)
13-23
46
Kapur S, Mizrahi R, Li M.
From dopamine to salience to psychosis – linking biology, pharmacology and phenomenology
of psychosis.
Schizophrenia research.
2005;
79 (1)
59-68
47
Goto Y, Otani S, Grace A A.
The Yin and Yang of dopamine release: a new perspective.
Neuropharmacology.
2007;
53 (5)
583-587
48
Kapur S, Mamo D.
Half a century of antipsychotics and still a central role for dopamine D 2 receptors.
Prog Neuropsychopharmacol Biol Psychiatry.
2003;
27 (7)
1081-1090
49
Juckel G, Schlagenhauf F, Koslowski M et al.
Dysfunction of ventral striatal reward prediction in schizophrenic patients treated
with typical, not atypical, neuroleptics.
Psychopharmacology.
2006;
187 (2)
222-228
50
Rosenfeld A J, Lieberman J A, Jarskog L F.
Oxytocin, Dopamine, and the Amygdala: A Neurofunctional Model of Social Cognitive
Deficits in Schizophrenia.
Schizophr Bull.
2011;
37 (5)
1077-1087
51
Harvey P D, Koren D, Reichenberg A et al.
Negative symptoms and cognitive deficits: what is the nature of their relationship?.
Schizophr Bull.
2006;
32 (2)
250-258
52
Ventura J, Hellemann G S, Thames A D et al.
Symptoms as mediators of the relationship between neurocognition and functional outcome
in schizophrenia: a meta-analysis.
Schizophr Res.
2009;
113 (2 – 3)
189-199
53
Juckel G, Schlagenhauf F, Koslowski M et al.
Dysfunction of ventral striatal reward prediction in schizophrenia.
Neuroimage.
2006;
29 (2)
409-416
54
Niv Y, Daw N D, Joel D et al.
Tonic dopamine: opportunity costs and the control of response vigor.
Psychopharmacology.
2007;
191 (3)
507-520
55
Schlaepfer T E, Cohen M X, Frick C et al.
Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major
depression.
Neuropsychopharmacology.
2008;
33 (2)
368-377
56
Hamamura T, Harada T.
Unique pharmacological profile of aripiprazole as the phasic component buster.
Psychopharmacology.
2007;
191 (3)
741-743
57
Mazza M, Squillacioti M R, Pecora R D et al.
Effect of aripiprazole on self-reported anhedonia in bipolar depressed patients.
Psychiatry Res.
2009;
165 (1 – 2)
193-196
58
Leucht S, Corves C, Arbter D et al.
Second-generation versus first-generation antipsychotic drugs for schizophrenia: a
meta-analysis.
Lancet.
2009;
373 (9657)
31-41
59
Sandyk R.
Pineal and habenula calcification in schizophrenia.
Int J Neurosci.
1992;
67 (1 – 4)
19-30
60
Corfas G, Roy K, Buxbaum J D.
Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia.
Nat Neurosci.
2004;
7 (6)
575-580
61
Williams N M, Preece A, Spurlock G et al.
Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia.
Mol Psychiatry.
2003;
8 (5)
485-487
62
Yang J Z, Si T M, Ruan Y et al.
Association study of neuregulin 1 gene with schizophrenia.
Mol Psychiatry.
2003;
8 (7)
706-9
63
Steiner H, Blum M, Kitai S T et al.
Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons
and forebrain areas of the adult rat.
Exp Neurol.
1999;
159 (2)
494-503
64
Lecourtier L, Kelly P H.
Bilateral lesions of the habenula induce attentional disturbances in rats.
Neuropsychopharmacology.
2005;
30 (3)
484-496
65
Lecourtier L, Neijt H C, Kelly P H.
Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia.
Eur J Neurosci.
2004;
19 (9)
2551-2560
66
Heldt S A, Ressler K J.
Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse
inhibition and locomotion.
Brain Res.
2006;
1073 – 1074
229-239
67
Shepard P D, Holcomb H H, Gold J M.
Schizophrenia in translation: the presence of absence: habenular regulation of dopamine
neurons and the encoding of negative outcomes.
Schizophr Bull.
2006;
32 (3)
417-421
68
Paul G, Reum T, Meissner W et al.
High frequency stimulation of the subthalamic nucleus influences striatal dopaminergic
metabolism in the naive rat.
Neuroreport.
2000;
11 (3)
441-444
69
Meissner W, Harnack D, Reese R et al.
High-frequency stimulation of the subthalamic nucleus enhances striatal dopamine release
and metabolism in rats.
J Neurochem.
2003;
85 (3)
601-609
70
Meissner W, Harnack D, Paul G et al.
Deep brain stimulation of subthalamic neurons increases striatal dopamine metabolism
and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats.
Neurosci Lett.
2002;
328 (2)
105-108
71
Meissner W, Reum T, Paul G et al.
Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic
nucleus in 6-hydroxydopamine lesioned rats.
Neurosci Lett.
2001;
303 (3)
165-168
72
Winter C, Lemke C, Sohr R et al.
High frequency stimulation of the subthalamic nucleus modulates neurotransmission
in limbic brain regions of the rat.
Exp Brain Res.
2008;
185 (3)
497-507
73
Benazzouz A, Piallat B, Pollak P et al.
Responses of substantia nigra pars reticulata and globus pallidus complex to high
frequency stimulation of the subthalamic nucleus in rats: electrophysiological data.
Neurosci Lett.
1995;
189 (2)
77-80
74
Benazzouz A, Gao D M, Ni Z G et al.
Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities
of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus
in the rat.
Neuroscience.
2000;
99 (2)
289-295
75
Benazzouz A, Gao D, Ni Z et al.
High frequency stimulation of the STN influences the activity of dopamine neurons
in the rat.
Neuroreport.
2000;
11 (7)
1593-1596
76
Robledo P, Feger J.
Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata
and the pallidal complex: electrophysiological data.
Brain Res.
1990;
518 (1 – 2)
47-54
77
Bruet N, Windels F, Carcenac C et al.
Neurochemical mechanisms induced by high frequency stimulation of the subthalamic
nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian
rats.
J Neuropathol Exp Neurol.
2003;
62 (12)
1228-1240
78
Buzsaki G, Draguhn A.
Neuronal oscillations in cortical networks.
Science.
2004;
304 (5679)
1926-1929
79
Uhlhaas P J, Roux F, Singer W et al.
The development of neural synchrony reflects late maturation and restructuring of
functional networks in humans.
Proc Natl Acad Sci U S A.
2009;
106 (24)
9866-9871
80
Stein von A, Sarnthein J.
Different frequencies for different scales of cortical integration: from local gamma
to long range alpha/theta synchronization.
Int J Psychophysiol.
2000;
38 (3)
301-313
81
Uhlhaas P J, Singer W.
Abnormal neural oscillations and synchrony in schizophrenia.
Nat Rev Neurosci.
2010;
11 (2)
100-113
82
Boutros N.
Lack of blinding in gating studies.
Schizophr Res.
2008;
103 (1 – 3)
336
; author reply 337
83
Spencer K M, Nestor P G, Perlmutter R et al.
Neural synchrony indexes disordered perception and cognition in schizophrenia.
Proc Natl Acad Sci U S A.
2004;
101 (49)
17 288-17 293
84
Uhlhaas P J, Haenschel C, Nikolic D et al.
The role of oscillations and synchrony in cortical networks and their putative relevance
for the pathophysiology of schizophrenia.
Schizophr Bull.
2008;
34 (5)
927-943
85
Uhlhaas P J, Linden D E, Singer W et al.
Dysfunctional long-range coordination of neural activity during Gestalt perception
in schizophrenia.
J Neurosci.
2006;
26 (31)
8168-8175
86
Haenschel C, Linden D E, Bittner R A et al.
Alpha phase locking predicts residual working memory performance in schizophrenia.
Biol Psychiatry.
2010;
68 (7)
595-598
87
Rolls E T, Loh M, Deco G et al.
Computational models of schizophrenia and dopamine modulation in the prefrontal cortex.
Nat Rev Neurosci.
2008;
9 (9)
696-709
88
Teubner M D, Nixon J B, Rasser P E et al.
Source localisation in a real human head.
Brain Topogr.
2005;
17 (4)
197-205
89
Timmermann L, Gross J, Butz M et al.
Pathological oscillatory coupling within the human motor system in different tremor
syndromes as revealed by magnetoencephalography.
Neurol Clin Neurophysiol.
2004;
26
90
Timmermann L, Gross J, Dirks M et al.
The cerebral oscillatory network of parkinsonian resting tremor.
Brain.
2003;
126 (Pt 1)
199-212
91
Kuhn A A, Kupsch A, Schneider G H et al.
Reduction in subthalamic 8 – 35 Hz oscillatory activity correlates with clinical improvement
in Parkinson’s disease.
Eur J Neurosci.
2006;
23 (7)
1956-1960
92
Kuhn A A, Williams D, Kupsch A et al.
Event-related beta desynchronization in human subthalamic nucleus correlates with
motor performance.
Brain.
2004;
127 (Pt 4)
735-746
93
Meissner W, Leblois A, Hansel D et al.
Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal
oscillations.
Brain.
2005;
128 (Pt 10)
2372-2382
94
Gallinat J, Mulert C, Bajbouj M et al.
Frontal and temporal dysfunction of auditory stimulus processing in schizophrenia.
Neuroimage.
2002;
17 (1)
110-127
95
Javitt D C.
When doors of perception close: bottom-up models of disrupted cognition in schizophrenia.
Annu Rev Clin Psychol.
2009;
5
249-275
96
Adcock R A, Dale C, Fisher M et al.
When top-down meets bottom-up: auditory training enhances verbal memory in schizophrenia.
Schizophr Bull.
2009;
35 (6)
1132-1141
97
Arends M, Winterer G.
Tiefe Hirnstimulation bei Schizophrenie – Ein neues Forschungsprojekt.
Nervenarzt.
2008;
Suppl 4
470
98
Gross A, Joutsiniemi S L, Rimon R et al.
Clozapine-induced QEEG changes correlate with clinical response in schizophrenic patients:
a prospective, longitudinal study.
Pharmacopsychiatry.
2004;
37 (3)
119-122
99 Andreasen N C. Scale for the Assessment of Negative Symptoms (SANS). Iowa City:
University of Iowa Press; 1983
100
Gschwandtner U, Zimmermann R, Pflueger M O et al.
Negative symptoms in neuroleptic-naive patients with first-episode psychosis correlate
with QEEG parameters.
Schizophr Res.
2009;
115 (2 – 3)
231-236
101
Singer W.
Neuronal synchrony: a versatile code for the definition of relations?.
Neuron.
1999;
24 (1)
49-65, 111 – 125
102
Mundt A, Klein J, Joel D et al.
High-frequency stimulation of the nucleus accumbens core and shell reduces quinpirole-induced
compulsive checking in rats.
Eur J Neurosci.
2009;
29 (12)
2401-2412
103
Klavir O, Flash S, Winter C et al.
High frequency stimulation and pharmacological inactivation of the subthalamic nucleus
reduces ‘compulsive’ lever-pressing in rats.
Exp Neurol.
2009;
215 (1)
101-109
104
Klavir O, Winter C, Joel D.
High but not low frequency stimulation of both the globus pallidus and the entopeduncular
nucleus reduces ‘compulsive’ lever-pressing in rats.
Behav Brain Res.
2011;
216 (1)
84-93
105
Djodari-Irani A, Klein J, Banzhaf J et al.
HFS and pharmacological inactivation of the globus pallidus and nucleus entopeduncularis
differentially affect quinpirole-induced compulsive checking in rats.
European Neuropsychopharmacology.
2010;
20
S281-S282
106
Winter C, Flash S, Klavir O et al.
The role of the subthalamic nucleus in ‘compulsive’ behavior in rats.
Eur J Neurosci.
2008;
27 (8)
1902-1911
107
Hamani C, Nobrega J N.
Deep brain stimulation in clinical trials and animal models of depression.
Eur J Neurosci.
2010;
32 (7)
1109-1117
108
Hamani C, Diwan M, Macedo C E et al.
Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in
rats.
Biol Psychiatry.
2010;
67 (2)
117-124
109
Vassoler F M, Schmidt H D, Gerard M E et al.
Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced
reinstatement of drug seeking in rats.
J Neurosci.
2008;
28 (35)
8735-8739
110
Rouaud T, Lardeux S, Panayotis N et al.
Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation.
Proc Natl Acad Sci U S A.
2010;
107 (3)
1196-1200
111
Winter C, Harnack D, Kupsch A.
Deep brain stimulation for neurological and psychiatric diseases: animal experiments
on effect and mechanisms.
Nervenarzt.
2010;
81 (6)
711-718
112
Feldon J, Weiner I.
Editorial: Special issue on modeling schizophrenia.
Behav Brain Res.
2009;
204 (2)
255-257
113
Andreasen N C.
The American concept of schizophrenia.
Schizophr Bull.
1989;
15 (4)
519-531
114
Klosterkotter J.
The revised definitions of schizophrenic disorders in ICD-10 and DSM-IV.
Fortschr Neurol Psychiatr.
1998;
66 (3)
133-143
115
Kirkpatrick B, Fenton W S, Carpenter Jr W T et al.
The NIMH-MATRICS consensus statement on negative symptoms.
Schizophr Bull.
2006;
32 (2)
214-219
116
Carter C S, Barch D M, Buchanan R W et al.
Identifying cognitive mechanisms targeted for treatment development in schizophrenia:
an overview of the first meeting of the Cognitive Neuroscience Treatment Research
to Improve Cognition in Schizophrenia Initiative.
Biol Psychiatry.
2008;
64 (1)
4-10
117
Nuechterlein K H, Green M F, Kern R S et al.
The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and
validity.
Am J Psychiatry.
2008;
165 (2)
203-213
1 Die Autoren J. Kuhn und M. Bodatsch haben in gleicher Weise zum Manuskript beigetragen.
Prof. Jens Kuhn
Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum der Universität
Köln
Kerpener Str. 62
50937 Köln
Email: jens.kuhn@uk-koeln.de