Zusammenfassung
Ziel: Studienziel war, die globale und regionale longitudinale ventrikuläre Herzmuskelfunktion
bei Feten mit angeborenen Herzfehlern zu beurteilen und diese mittels „Feature-tracking“-Technik
erhaltenen Messwerte mit Referenzwerten gesunder Feten zu vergleichen. Material und Methoden: Bei 17 Feten mit angeborenen Herzfehlern (10 mit Linksherzobstruktion, 5 mit Fallot’scher
Tetralogie und 2 mit Double outlet right ventricle [DORV]) konnten globale und segmentale
longitudinale maximale systolische Strain, Strain rate und Geschwindigkeitsmesswerte
des LV- und RV-Myokards mittels neuer „Feature-tracking“-Technik beurteilt und in
einem zweiten Schritt mit 24 gesunden Kontroll-Feten (21. – 36. Schwangerschaftswoche)
verglichen werden. Ergebnisse: Globale longitudinale maximale systolische Strain-Messwerte bei Feten mit Fallot’scher
Tetralogie oder DORV waren im Vergleich zu den Kontroll-Feten in beiden Ventrikeln
leicht erhöht (RV: p = 0,055; LV: p = 0,063). Die entsprechende RV Strain rate wies
in dieser Untergruppe tendenziell etwas höhere Werte auf (p = 0,09). Die globalen
LV-Geschwindigkeitsmessungen bei Feten mit Fallot’scher Tetralogie oder DORV wiesen
eher niedrigere Werte auf (p = 0,054). Feten mit Linksherzobstruktion wiesen hingegen
keinen signifikanten Unterschied bei Strain, Strain rate und Geschwindigkeitsmessungen
im Vergleich zur Kontrollgruppe auf. Schlussfolgerung: Die globale longitudinale maximale systolische Ventrikelfunktion zeigte in der Subgruppe
der Feten mit Fallot’scher Tetralogie oder DORV beidseits geringgradig höhere Strain-Werte
und rechtsseitig höhere Strain-rate-Werte im Vergleich zu den gesunden Kontroll-Feten.
Ob diese neue winkelunabhängige Technik geeignet ist, zwischen gesunden und erkrankten
Feten zu unterscheiden, muss durch weitere Studien überprüft werden.
Abstract
Purpose: The aim of this study was to assess global and regional longitudinal peak systolic
ventricular function in fetuses with congenital heart disease (CHD) and compare measurements
derived from feature tracking with reference values of healthy fetuses with a matching
gestational age. Materials and Methods: Global and segmental longitudinal peak systolic strain (LPSS), strain rate and velocity
values of the left (LV) ventricular myocardium and right (RV) ventricular myocardium
were assessed by a novel feature tracking technique in 17 fetuses with congenital
heart disease (10 fetuses with left heart obstruction (LHO), 5 fetuses with tetralogy
of Fallot (TOF) and 2 fetuses with double outlet right ventricle (DORV)) and were
compared in a second step with 24 matched healthy fetuses (gestational age range 21 – 36
weeks of gestation). Results: The global LPSS of both ventricles was slightly elevated in fetuses with TOF or DORV
compared with controls (RV: p = 0.055; LV: p = 0.063). The RV strain rate presented
a trend toward higher values (p = 0.09). Corresponding global LV velocity values of
fetuses with TOF or DORV revealed a tendency to decrease compared to healthy controls
(p = 0.054). In contrast, all measurements of fetuses with LHO did not show any statistical
difference regarding deformation parameters or velocity compared to healthy controls.
Conclusion: Global longitudinal peak systolic measurements in fetuses with congenital heart disease
revealed slightly higher strain (RV/LV) and strain rate (RV) values in the subgroup
of fetuses with TOF or DORV compared to healthy controls. Whether the application
of this new angle-independent technique is suitable for discriminating between healthy
and diseased fetuses has to be verified in further investigations.
Key words
cardiac - echocardiography - ultrasound 2D
References
1
Harada K, Tsuda A, Orino T et al.
Tissue Doppler imaging in the normal fetus.
Int J Cardiol.
1999;
71
227-234
2
Stefani L, Toncelli L, Gianassi M et al.
Two-dimensional tracking and TDI are consistent methods for evaluating myocardial
longitudinal peak strain in left and right ventricle basal segments in athletes.
Cardiovasc Ultrasound.
2007;
5
7
3
Barker P C, Houle H, Li J S et al.
Global longitudinal cardiac strain and strain rate for assessment of fetal cardiac
function: novel experience with velocity vector imaging.
Echocardiography.
2009;
26
28-36
4
Van Mieghem T, Giusca S, DeKoninck P et al.
Prospective assessment of fetal cardiac function with speckle tracking in healthy
fetuses and recipient fetuses of twin-to-twin transfusion syndrome.
J Am Soc Echocardiogr.
2010;
23
301-308
5
Thomas G.
Tissue Doppler echocardiography – a case of right tool, wrong use.
Cardiovasc Ultrasound.
2004;
2
12
6
Marwick T H.
Measurement of strain and strain rate by echocardiography: ready for prime time?.
J Am Coll Cardiol.
2006;
47
1313-1327
7
Younoszai A K, Saudek D E, Emery S P et al.
Evaluation of myocardial mechanics in the fetus by velocity vector imaging.
J Am Soc Echocardiogr.
2008;
21
470-474
8
Pirat B, Khoury D S, Hartley C J et al.
A novel feature-tracking echocardiographic method for the quantitation of regional
myocardial function: validation in an animal model of ischemia-reperfusion.
J Am Coll Cardiol.
2008;
51
651-659
9
Peng Q H, Zhou Q C, Zeng S et al.
Evaluation of regional left ventricular longitudinal function in 151 normal fetuses
using velocity vector imaging.
Prenat Diagn.
2009;
29
1149-1155
10
Willruth A M, Geipel A K, Fimmers R et al.
Assessment of right ventricular global and regional longitudinal peak systolic strain,
strain rate and velocity in healthy fetuses and impact of gestational age using a
novel speckle/feature-tracking based algorithm.
Ultrasound Obstet Gynecol.
2011;
37
143-149
11
Willruth A M, Geipel A, Berg C et al.
Assessment of Left Ventricular Global and Regional Longitudinal Peak Systolic Strain,
Strain Rate and Velocity with Feature Tracking in Healthy Fetuses.
Ultraschall in Med.
2011
DOI: 10.1055/s-0029-1246029
12
Yagel S, Cohen S M, Achiron R.
Examination of the fetal heart by five short-axis views: a proposed screening method
for comprehensive cardiac evaluation.
Ultrasound Obstet Gynecol.
2001;
17
367-369
13
Berg C, Gembruch U, Geipel A.
Outflow tract sectional planes in two-dimensional fetal echocardiography – part I.
Ultraschall in Med.
2009;
30
128-144
; quiz 145 – 149
14
Berg C, Gembruch U, Geipel A.
Outflow tract views in two-dimensional fetal echocardiography – part ii.
Ultraschall in Med.
2009;
30
230-251
15
D’hooge J, Bijnens B, Jamal F et al.
High frame rate myocardial integrated backscatter. Does this change our understanding
of this acoustic parameter?.
Eur J Echocardiogr.
2000;
1
32-41
16
Perles Z, Nir A, Gavri S et al.
Assessment of fetal myocardial performance using myocardial deformation analysis.
Am J Cardiol.
2007;
99
993-996
17
Struijk P C, Mathews V J, Loupas T et al.
Blood pressure estimation in the human fetal descending aorta.
Ultrasound Obstet Gynecol.
2008;
32
673-681
18
Gardiner H M.
Response of the fetal heart to changes in load: from hyperplasia to heart failure.
Heart.
2005;
91
871-873
19
Gardiner H M, Pasquini L, Wolfenden J et al.
Increased periconceptual maternal glycated haemoglobin in diabetic mothers reduces
fetal long axis cardiac function.
Heart.
2006;
92
1125-1130
20
Vannan M A, Pedrizzetti G, Li P et al.
Effect of cardiac resynchronization therapy on longitudinal and circumferential left
ventricular mechanics by velocity vector imaging: description and initial clinical
application of a novel method using high-frame rate B-mode echocardiographic images.
Echocardiography.
2005;
22
826-830
21
D’hooge J, Heimdal A, Jamal F et al.
Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation
and limitations.
Eur J Echocardiogr.
2000;
1
154-170
22
Gilman G, Khandheria B K, Hagen M E et al.
Strain rate and strain: a step-by-step approach to image and data acquisition.
J Am Soc Echocardiogr.
2004;
17
1011-1020
23
Falkensammer C B, Paul J, Huhta J C.
Fetal congestive heart failure: correlation of Tei-index and Cardiovascular-score.
J Perinat Med.
2001;
29
390-398
24
Pacileo G, Calabro P, Limongelli G et al.
Left ventricular remodeling, mechanics, and tissue characterization in congenital
aortic stenosis.
J Am Soc Echocardiogr.
2003;
16
214-220
25
Kiraly P, Kapusta L, Thijssen J M et al.
Left ventricular myocardial function in congenital valvar aortic stenosis assessed
by ultrasound tissue-velocity and strain-rate techniques.
Ultrasound Med Biol.
2003;
29
615-620
26
Eidem B W, McMahon C J, Ayres N A et al.
Impact of chronic left ventricular preload and afterload on Doppler tissue imaging
velocities: a study in congenital heart disease.
J Am Soc Echocardiogr.
2005;
18
830-838
27
Giusca S, Jurcut R, Ginghina C et al.
The right ventricle: anatomy, physiology and functional assessment.
Acta Cardiol.
2010;
65
67-77
28
Sheehan F, Redington A.
The right ventricle: anatomy, physiology and clinical imaging.
Heart.
2008;
94
1510-1515
Dr. Arne Michael Willruth
Deparment of Obstetrics and Prenatal Medicine, University Bonn
Sigmund-Freud-Str. 25
53105 Bonn
Germany
Phone: ++ 49/2 28/28 71 50 82
Fax: ++ 49/2 28/28 71 50 81
Email: arnewillruth@hotmail.com