Abstract
The Diels-Alder reaction of spirobicyclic cyclopentadiene
derivatives, prepared by reaction of cyclopentadienyllithium and
epichlorohydrin, with maleic anhydride gave a simple access to spiro
tricyclic polyoxygenated compounds of synthetic interest. The solvolytic
behavior of 1-(tosyloxymethyl)spiro[2.4]hepta-4,6-diene,
a 5-spirocyclopentadiene, shows that the ionization of the tosylate
was unlikely.
Key words
tricyclic compounds - Diels-Alder reaction - spiro compounds - stereoselective synthesis
References
<A NAME="RT20510SS-1A">1a </A>
Laurenti D.
Feuerstein M.
Pèpe G.
Doucet H.
Santelli M.
J. Org. Chem.
2001,
66:
1633
<A NAME="RT20510SS-1B">1b </A>
Doucet H.
Santelli M.
Synlett
2006,
2001
<A NAME="RT20510SS-2">2 </A>
Reynaud C.
Fall Y.
Feuerstein M.
Doucet H.
Santelli M.
Tetrahedron
2009,
65:
7440
<A NAME="RT20510SS-3A">3a </A>
Bangert K.
Boekelheide V.
Tetrahedron
Lett.
1963,
4:
1119
<A NAME="RT20510SS-3B">3b </A>
Corey EJ.
Shiner CS.
Volante RP.
Cyr CR.
Tetrahedron
Lett.
1975,
16:
1161
<A NAME="RT20510SS-3C">3c </A>
Lokensgard DM.
Dougherty DA.
Hilinski EF.
Berson JA.
Proc. Natl.
Acad. Sci. U.S.A.
1980,
77:
3090
<A NAME="RT20510SS-3D">3d </A>
Attah-Poku SK.
Gallacher G.
Ng AS.
Taylor LEB.
Alward SJ.
Fallis AG.
Tetrahedron Lett.
1983,
24:
677
<A NAME="RT20510SS-3E">3e </A>
Gallacher G.
Ng AS.
Attah-Poku SK.
Antczak K.
Alward SJ.
Kingston JF.
Fallis AG.
Can. J. Chem.
1984,
62:
1709
<A NAME="RT20510SS-3F">3f </A>
González AG.
Darias J.
Díaz F.
Tetrahedron Lett.
1984,
25:
2697
<A NAME="RT20510SS-3G">3g </A>
Antczak K.
Kingston JF.
Fallis AG.
Can. J. Chem.
1985,
63:
993
<A NAME="RT20510SS-3H">3h </A>
Antczak K.
Kingston JF.
Fallis A.
Hanson AW.
Can. J. Chem.
1987,
65:
114
<A NAME="RT20510SS-3I">3i </A>
Ledford BE.
Carreira EM.
J.
Am. Chem. Soc.
1995,
117:
11811
<A NAME="RT20510SS-3J">3j </A>
Starr JT.
Baudat A.
Carreira EM.
Tetrahedron Lett.
1998,
39:
5675
<A NAME="RT20510SS-3K">3k </A>
Starr JT.
Koch G.
Carreira EM.
J. Am. Chem. Soc.
2000,
122:
8793
<A NAME="RT20510SS-3L">3l </A>
Gorman JST.
Lynch V.
Pagenkopf BL.
Young B.
Tetrahedron
Lett.
2003,
44:
5435
<A NAME="RT20510SS-3M">3m </A>
Avilov DV.
Malusare MG.
Arslancan E.
Dittmer DC.
Org.
Lett.
2004,
6:
2225
<A NAME="RT20510SS-3N">3n </A>
Nadany AE.
Mckendrick JE.
Tetrahedron
Lett.
2007,
48:
4071
<A NAME="RT20510SS-4">4 </A>
For example, for syn -isomers 2a and 2c , the
chemical shifts of carbon atoms of anhydrides are different, and
for anti -isomers 3a and 3c the chemical shifts are identical.
<A NAME="RT20510SS-5">5 </A>
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Montgomery JA.
Vreven T.
Kudin KN.
Burant JC.
Millam JM.
Iyengar SS.
Tomasi J.
Barone V.
Mennucci B.
Cossi M.
Scalmani G.
Rega N.
Petersson GA.
Nakatsuji H.
Hada M.
Ehara M.
Toyota K.
Fukuda R.
Hasegawa J.
Ishida M.
Nakajima T.
Honda Y.
Kitao O.
Nakai H.
Klene M.
Li X.
Knox JE.
Hratchian HP.
Cross JB.
Bakken V.
Adamo C.
Jaramillo J.
Gomperts R.
Stratmann RE.
Yazyev O.
Austin AJ.
Cammi R.
Pomelli C.
Ochterski JW.
Ayala PY.
Morokuma K.
Voth GA.
Salvador P.
Dannenberg JJ.
Zakrzewski VG.
Dapprich S.
Daniels AD.
Strain MC.
Farkas O.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Ortiz JV.
Cui Q.
Baboul AG.
Clifford S.
Cioslowski J.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Challacombe M.
Gill PMW.
Johnson B.
Chen W.
Wong MW.
Gonzalez C.
Pople JA.
Gaussian 03, Revision E.01
Gaussian
Inc.;
Wallingford (CT):
2004.
<A NAME="RT20510SS-6">6 </A>
Saunders J.
Tipney DC.
Robins P.
Tetrahedron
Lett.
1982,
23:
4147
<A NAME="RT20510SS-7A">7a </A>
Coxon JM.
McDonald DQ.
Tetrahedron Lett.
1992,
33:
651
<A NAME="RT20510SS-7B">7b </A>
Werstiuk NH.
Ma J.
Macaulay JB.
Fallis AG.
Can.
J. Chem.
1992,
70:
2798
<A NAME="RT20510SS-7C">7c </A> For recent studies and
references, see:
Ishida M.
Itakura M.
Tashiro H.
Tetrahedron
Lett.
2008,
49:
1804
<A NAME="RT20510SS-8">8 </A>
Special Issue: Nonclassical Carbocations, Acc. Chem. Res.
1983 , 16, 425
<A NAME="RT20510SS-9">9 </A>
Oda M.
Breslow R.
Tetrahedron Lett.
1973,
14:
2537
<A NAME="RT20510SS-10">10 </A>
Warrener RN.
Harrison PA.
Sterns M.
Russell RA.
J. Chem. Soc., Chem.
Commun.
1984,
546
<A NAME="RT20510SS-11A">11a </A>
Kornblum N.
Jones WJ.
Anderson GJ.
J. Am. Chem. Soc.
1959,
81:
4113
<A NAME="RT20510SS-11B">11b </A>
Smith MB.
March J.
March’s Advanced Organic Chemistry
6th
ed.:
Wiley;
Hoboken (NJ):
2007.
p.1765
<A NAME="RT20510SS-12">12 </A> The silver-assisted solvolysis of
cyclopentadien-5-yl iodide is at least 105 times slower
than that of cyclopentyl iodide, see:
Breslow R.
Hoffman JM.
J. Am.
Chem. Soc.
1972,
94:
2110
<A NAME="RT20510SS-13">13 </A>
de Vries EFJ.
Brussee J.
van
der Gen A.
J. Org. Chem.
1994,
59:
7133
<A NAME="RT20510SS-14">14 </A>
X-ray crystallography: CCDC-794286
(for 3b ), contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge at
www.ccdc.cam.ac.uk/conts/retrieving.html [or
from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; or e-mail: deposit@ccdc.cam.ac.uk].