References
1a
Al-Masoudim NA.
Al-SoudY A.
Tetrahedron
Lett.
2002,
43:
4021
1b
Alvarez R.
Velazquez S.
Aquaro A.
San-Felix S.
Clercq ED.
Perno C.
Karlsson A.
Balzarini J.
Camarasa MJ.
J.
Med. Chem.
1994,
37:
4185
1c
Wamhoff H. In
Comprehensive Heterocyclic Chemistry
Vol.
5:
Katritzky AR.
Rees CW.
Pergamon;
Oxford:
1984.
p.669
1d
Buckle DR.
Rockell CJM.
Smith H.
Spicer BA.
J.
Med.Chem.
1986,
29:
2262
1e
Buckel DR.
Outred DJ.
Rockell CJM.
Smith H.
Spicer BA.
J. Med. Chem.
1983,
26:
251
1f
Holla BS.
Mahalinga M.
Karthikeyan MS.
Poojary B.
Akberali PM.
Kumari NS.
Eur.
J. Med. Chem.
2005,
40:
1173
1g
Olesen PH.
Sørensen AR.
Ursø B.
Kurtzhals P.
Bowler AN.
Ehrbar U.
Hansen BF.
J. Med.
Chem.
2003,
46:
3333
2a
Wacharasindhu S.
Bardhan S.
Wan Z.-K.
Tabei K.
Mansour TS.
J. Am. Chem. Soc.
2009,
131:
4174
2b
Bock VD.
Speijer D.
Hiemstra H.
Maarseveen JHV.
Org.
Biomol. Chem.
2007,
5:
971
2c
Costa MS.
Boechat N.
Rangel EA.
Silva FDD.
Souza AMTD.
Rodrigues CR.
Castro HC.
Junior IN.
Lourenco MCS.
Wardell S.
Ferreira VF.
Bioorg. Med. Chem.
2006,
14:
8644
2d
Sivakumar K.
Xie F.
Cash BM.
Long S.
Barnhill HN.
Wang Q.
Org. Lett.
2004,
6:
4603
2e
Kolb HC.
Sharpless KB.
Drug
Discovery Today
2003,
8:
1128
2f
Manetsch R.
Krasiski A.
Radi Z.
Raushel J.
Taylor PK.
Sharpless B.
Kolb HC.
J.
Am. Chem. Soc.
2004,
126:
12809
Selected examples of methods of
synthesizing 1,2,3 triazoles:
3a
Rostovtsev VV.
Green LG.
Fokin VV.
Sharpless KB.
Angew.
Chem. Int. Ed.
2002,
41:
2596
3b
Zhang L.
Chen X.
Xue P.
Sun HHY.
Williams
ID.
Sharpless KB.
Fokin VV.
Jia G.
J.
Am. Chem. Soc.
2005,
127:
15998
3c
Yang D.
Fu N.
Liu Z.
Li Y.
Chen B.
Synlett
2007,
278
3d
Tornøe CW.
Christensen C.
Meldal M.
J. Org. Chem.
2002,
67:
3057
3e
Chen
Z.-Y.
Wu M.-J.
Org. Lett.
2005,
7:
475
3f
Sreedhar B.
Reddy PS.
Krishna VR.
Tetrahedron Lett.
2007,
48:
5831
3g
Coats SJ.
Link JS.
Gauthier D.
Hlasta DJ.
Org.
Lett.
2005,
7:
1469
4a
Hlasta DJ.
Ackerman JH.
J. Org. Chem.
1994,
59:
6184
4b
Sasaki T.
Eguchi S.
Yamaguchi M.
Esaki T.
J. Org. Chem.
1981,
46:
1800
4c
Howell SJ.
Spencer N.
Philp D.
Tetrahedron
2001,
57:
4945
4d
Scriven
EFV.
Turnbull K.
Chem.
Rev.
1988,
88:
297
Recent developed methods of synthesizing
N2-substitued 1,2,3 triazoles:
5a
Kamijo S.
Jin T.
Huo Z.
Yamamoto Y.
J. Am. Chem. Soc.
2003,
125:
7786
5b
Chen Y.
Liu Y.
Petersena JL.
Shi X.
Chem. Commun.
2008,
3254
5c
Liu Y.
Yan W.
Chen Y.
Petersen JL.
Shi X.
Org. Lett.
2008,
10:
5389
5d
Wang X.
Zhang L.
Lee H.
Haddad N.
Krishnamurthy D.
Senanayake CH.
Org. Lett.
2009,
11:
5026
5e
Kalisiak J.
Sharpless KB.
Fokin VV.
Org. Lett.
2008,
10:
3171
6
Li J.
Wang D.
Zhang Y.
Li J.
Chen B.
Org. Lett.
2009,
11:
3024
7 Three isomers can be readily isolated
by column chroma-tography. According to the ref. 5b, N2-alkylation
of 4,5-disubstituted 1,2,3-triazoles is the most favorable and the polarity
of N2 product is the lowest. Additionally, N1-alkylation was the
least favored in almost all cases due to the conformation of 1,4,5-trisubstituted
1,2,3-triazoles. Therefore, we can distinguish the N-1, N-2, and N-3 products
easily.
8 The CCDC number of 4f (C21H13FN4O3):
752728, the CCDC number of 9e (C21H13ClN4O3):
752729.
9
Regioselective
Synthesis of 2,4,5-Trisubstituted 1,2,3-Triazoles - General
Procedure for the Reaction between Ynones, Sodium Azide, and Aliphatic
Alkyl Halides, Regioselective Sythesis of (2-Benzyl-5-phenyl-2
H
-1,2,3-triazol-4-yl)(phenyl)methanone
(1a)
All reactions were performed on a 0.25 mmol scale
relative to ynones. 1,3-Diphenylprop-2-yn-1-one (0.25 mmol), NaN3 (0.275
mmol) and DMSO (1.5 mL) were successively added to a round-bottom
sidearm flask (10 mL) reacted at r.t. until ynones disappeared by
TLC test (about 20 min), then benzyl bromide (0.375 mmol) was added
to the mixture and the reaction continued at r.t. for 160 min. Following,
to the reaction mixture was added H2O (2 mL), 20% HCl
solution (1 mL), and extracted with ester (3 × 10
mL). The combined organic phases were washed with brine (2 × 3
mL), dried over anhyd MgSO4, and concentrated in vacuo.
The residue was subjected to flash column chromatography with hexanes-EtOAc
(40:1, 20:1, 5:1) as eluent to obtain the desired isomers 1a (1a: 63mg), 2a (6 mg), 3a (12
mg), 98% yield.
(2-Benzyl-5-phenyl-2
H
-1,2,3-triazol-4-yl)(phenyl)-methanone
(1a)
Mp 93-95 ˚C. IR: 3063.48, 1661.58,
1597.39 cm-¹. ¹H
NMR (300 MHz, CDCl3): δ = 8.03-8.06
(m, 2 H), 7.79-7.82 (m, 2 H), 7.56-7.61 (m, 1
H), 7.35-7.48 (m, 10 H), 5.68 (s, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 187.84, 150.01,
142.24, 137.25, 134.47, 133.30, 130.44, 129.61, 129.07, 128.86, 128.71,
128.60, 128.32, 128.27, 128.17, 59.24. HRMS:
m/z calcd
for C22H18N3O [M + H]+:
340.14444; found: 340.14426.5b
General
Procedure of the Reaction between Ynones, Sodium Azide, and Aryl
Halides: Regioselective Synthesis of [2-(4-Nitrophenyl)-5-phenyl-2
H
-1,2,3-triazol-4-yl](phenyl)
Methanone (2a)
All reactions were performed on a 0.25
mmol scale relative to ynones. 1,3-Diphenylprop-2-yn-1-one (0.25
mmol), NaN3 (0.25 mmol), 4-O2NC6H4Cl
(0.375 mmol), and DMSO (1.5 mL) were successively added to a round-bottom
sidearm flask (10 mL) and reacted at 120 ˚C for
48 h, then H2O (2 mL), 20% HCl solution (1 mL)
were added to the reaction mixture after cooled and extracted with
ester (3 × 10 mL). The combined organic
phases were washed with brine (2 × 3 mL),
dried over anhyd MgSO4, and concentrated in vacuo. The
residue was subjected to flash column chromatography with hexanes-EtOAc
(20:1) as eluent to obtain the desired 4a (79
mg, yield 85%); mp 145-147 ˚C. IR: 3074.59, 2918.34,
1652.74, 1593.64 cm-¹. ¹H
NMR (400 MHz, CDCl3): δ = 8.33-8.35
(m, 4 H), 8.11-8.13 (m, 2 H), 7.87-7.90 (m, 2
H), 7.64-7.67 (m, 1 H), 7.44-7.54 (m, 5 H).
¹³C
NMR (100 MHz, CDCl3): δ = 187.45, 151.34,
146.89, 144.36, 143.09, 136.65, 133.90, 130.44, 129.82, 128.69, 128.58,
128.56, 128.52, 125.20, 119.50. MS (EI): m/z = 370 [M]+.
Anal. Calcd for C21H14N4O3:
C, 68.10; H, 3.81; N, 15.13. Found: C, 68.14; H, 3.79; N, 15.15.6
Copies of NMR spectroscopic,
ESI-HRMS analysis, MS (EI) element analysis, and X-ray crystallography
are found in the Supporting Information.