RSS-Feed abonnieren
DOI: 10.1055/s-0030-1252045
© Georg Thieme Verlag KG Stuttgart · New York
Tissue Engineering der Leber
Hepatic Tissue EngineeringPublikationsverlauf
eingereicht 30.10.2009
akzeptiert 15.3.2010
Publikationsdatum:
19. April 2010 (online)

Zusammenfassung
Lebertransplantation ist bisher die einzige kurative Behandlungsmöglichkeit für Leberversagen im Endstadium. Limitierung der Lebertransplantation ist vor allem der Spenderorganmangel. Deshalb werden zellbasierte Behandlungsmöglichkeiten für bestimmte Lebererkrankungen derzeit intensiv beforscht. Prinzip des Tissue Engineering ist die Idee einer Wechselwirkung zwischen Zellen und einer dreidimensionalen Trägerstruktur (Matrix). Dabei bewirkt die Matrix durch eine dreidimensionale Orientierung der Zellen sowie eine gezielte Zell-Matrix Interaktion eine gezielte Stimulation von Wachstum und Differenzierung. In Hepatozytenkulturen konnte eine deutliche Steigerung des Zellanwachsens und des Zellüberlebens durch den Einsatz von dreidimensionalen Trägermaterialien und Bioreaktorsystemen gezeigt werden. Es zeigte sich auch eine deutlich gesteigerte Synthese- und Entgiftungsleistung der kultivierten Hepatozyten. Im Tiermodell wurde ein Modell der heterotopen Hepatozytentransplantation unter Nutzung dreidimensionaler Matrizes etabliert. In einem solchen Transplantationsmodell gelang der Nachweis eines Langzeitüberlebens und -funktion der transplantierten Hepatozyten. Limitierung war das unzureichende initiale Engraftment. Damit zeigt die Anwendung des Tissue Engineerings für die Leber vielversprechende Ergebnisse auf, um eine Weiterentwicklung zellbasierter Therapieformen für Lebererkrankungen zu ermöglichen. Lösungen für die Probleme einer adäquaten initialen Gefäßversorgung der transplantierten Zellen sowie der Formierung von Gallenwegen bedürfen zukünftiger Forschung, um das Tissue Engineering der Leber näher an einen klinischen Einsatz heranbringen zu können.
Abstract
Today liver transplantation is the only curative option for the treatment of end-stage liver diseases. A major limitation of liver transplantation is the donor organ shortage. Therefore, tissue engineering based cell transplantation is currently under investigation with the aim to replace liver tissue and function. The principle of tissue engineering is the notion of an interaction between a cell and a three-dimensional matrix. The matrix serves as a scaffold and guides a three-dimensional cell assembly. In addition, the matrix provides for a regulation of cell proliferation and function by cell-matrix interactions. In cultures of hepatocytes a regulation of cell proliferation and specific function by using three-dimensional matrices and by modifying the surface with isolated molecules of the extracellular matrix has been demonstrated. Furthermore, a beneficial effect of a flow bioreactor system on cell viability and function was observed. In addition, a system for heterotopic hepatocyte transplantation on polymeric matrices was developed in an animal model. In this transplantation model a long-term proliferation and function of transplanted hepatocytes was shown. The major limitation of matrix-based transplantation systems is the high initial cell loss, most probably due to an insufficient vascularisation. Thus, the development of vascularised matrices and the creation of bile ducts remain major problems in the technologies of hepatic tissue engineering and have to be addressed to enable further advances towards clinical applications.
Schlüsselwörter
Tissue Engineering der Leber - Leberzelltransplantation - Bioreaktorkultur - Polymermatrizes
Key words
hepatic tissue engineering - hepatocyte transplantation - bioreactor - polymer matrices
Literatur
- 1
Feng S, Si M, Taranto SE. et al .
Trends over a decade of pediatric liver transplantation in the United States.
Liver Transplant.
2006;
12
578-584
MissingFormLabel
- 2
Raper SE.
Hepatocyte transplantation and gene therapy.
Clin Transplant.
1995;
9
249-254
MissingFormLabel
- 3
Tiao GM, Alonso MH, Ryckman FC.
Pediatric liver transplantation.
Sem Ped Surg.
2006;
15
218-227
MissingFormLabel
- 4
Asonuma K, Gilbert JC, Stein JE. et al .
Quantitation of transplanted hepatic mass necessary to cure the gunn rat model of
hyperbilirubinemia.
J Pediatr Surg.
1992;
27
298-301
MissingFormLabel
- 5
Malhi H, Gupta S.
Hepatocyte transplantation: new horizons and challenges.
J Hepatobiliary Pancreat Surg.
2001;
8
40-50
MissingFormLabel
- 6
Anderson NG.
The mass isolation of whole cells from rat liver.
Science.
1953;
117
627-628
MissingFormLabel
- 7
Berry MN, Friend DS.
High-yield preparation of isolated rat liver parenchymal cells: a biochemical and
fine structural study.
J Cell Biol.
1969;
43
506-520
MissingFormLabel
- 8
Seglen PO, Jervell KF.
A simple perfusion technique applied to glucocorticoid regulation of tryptophan oxygenase
turnover and bile production in the isolated rat liver.
Hoppe Seylers Z Physiol Chem.
1969;
350
308-316
MissingFormLabel
- 9
Kaufmann PM, Sano K, Uyama S. et al .
Heterotopic hepatocyte transplantation using three dimensional polymers: evaluation
of the stimulatory effects by portocaval shunt or islet cell cotransplantation.
Transplant Proc.
1996;
26
3343-3345
MissingFormLabel
- 10
Mooney D, Hansen L, Vacanti J. et al .
Switching from differentiation to growth in hepatocytes: Control by extracellular
matrix.
J Cell Physiol.
1992;
151
497-505
MissingFormLabel
- 11
Berthiaume F, Moghe PV, Toner M. et al .
Effect of extracellular matrix topology on cell structure, function, and physiological
responsiveness: hepatocytes cultured in a sandwich configuration.
FASEB J.
1996;
10
1471-1484
MissingFormLabel
- 12
Block GD, Locker J, Bowen WC. et al .
Population expansion, clonal growth, and specific differentiation patterns in primary
cultures of hepatocytes induced by HGF/Sf, EGF and TGF alpha in a chemically defined
(HGM) medium.
J Cell Biol.
1996;
132
1133-1149
MissingFormLabel
- 13
Reid LM.
Stem cell biology, hormone/matrix synergies and liver differentiation.
Curr Opin Cell Biol.
1990;
2
121-130
MissingFormLabel
- 14
Guguen-Guillouzo C, Clément B, Baffet G. et al .
Maintenance and reversibility of active albumin secretion by adult rat hepatocytes
co-cultured with another liver epithelial cell type.
Exp Cell Res.
1983;
143
47-54
MissingFormLabel
- 15
Shimaoka S, Nakamura T, Ichihara A.
Stimulation of growth of primary cultured adult rat hepatocytes without growth factors
by coculture with nonparenchymal liver cells.
Exp Cell Res.
1987;
172
228-242
MissingFormLabel
- 16
Bhatia SN, Balis UJ, Yarmush ML. et al .
Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation
of hepatocytes and nonparenchymal cells.
FASEB J.
1999;
13
1883-1900
MissingFormLabel
- 17
Golinski PA, Zöller N, Kippenberger S. et al .
Development of an engraftable skin equivalent based on Matriderm with human keratinocytes
and fibroblasts.
Handchir Mikrochir Plast Chir.
2009;
41
327-332
MissingFormLabel
- 18
Mooney DJ, Park S, Kaufmann PM. et al .
Biodegradable sponges for hepatocyte transplantation.
J Biomed Mater Res.
1995;
29
959-965
MissingFormLabel
- 19
Kaufmann PM, Heimrath S, Kim BD. et al .
Highly porous polymer matrices as three dimensional culture system for hepatocytes.
Cell Transplant.
1997;
6
463-468
MissingFormLabel
- 20
Lee H, Cusick RA, Browne F. et al .
Local delivery of basic fibroblast growth factor increases both angiogenesis and engraftment
of hepatocytes in tissue-engineered polymer devices.
Transplantation.
2002;
73
1589-1593
MissingFormLabel
- 21
Rozga J, Williams F, Ro MS. et al .
Development of a bioartificial liver: properties and function of a hollow-fiber module
inoculated with liver cells.
Hepatology.
1993;
17
258-265
MissingFormLabel
- 22
Fiegel HC, Havers J, Kneser U. et al .
Influence of flow conditions and matrix coatings on growth and differentiation of
three-dimensionally cultured rat hepatocytes.
Tissue Eng.
2004;
10
165-174
MissingFormLabel
- 23
Pearse MJ, Witort E, Mottram P. et al .
Anti-gal antibody-mediated allograft rejection in alpha1,3-galactosyltransferase gene
knockout mice: a model of delayed xenograft rejection.
Transplantation.
1998;
66
748-754
MissingFormLabel
- 24
Obermayer N, Busse B, Grünwald A. et al .
Biochemical characterization of bioreactors for hybrid liver support: serum-free liver
cell coculture of nonparenchymal and parenchymal cells.
Transplant Proc.
2001;
33
1930-1931
MissingFormLabel
- 25
Bartolo LD, Bader A.
Flat membrane bioreactor for the replacement of liver functions.
Ernst Schering Res Found Workshop.
2002;
35
89-104
MissingFormLabel
- 26
Yanagi K, Ookawa K, Mizuno S. et al .
Performance of a new hybrid artificial liver support system using hepatocytes entrapped
within a hydrogel.
ASAIO Trans.
1989;
35
570-572
MissingFormLabel
- 27
Doré E, Legallais C.
A new concept of bioartificial liver based on a fluidized bed bioreactor.
Ther Apher.
1999;
3
264-267
MissingFormLabel
- 28
Kneser U, Kaufmann PM, Fiegel HC. et al .
Heterotopic hepatocyte transplantation utilizing pancreatic islet cotransplantation
for hepatotrophic stimulation: morphologic and morphometric evaluation.
Pediatr Surg Int.
1999;
15
168-174
MissingFormLabel
- 29
Fiegel HC, Kaufmann PM, Bruns H. et al .
Hepatic tissue engineering: from transplantation to customized cell-based liver directed
therapies from the laboratory.
J Cell Mol Med.
2008;
12
56-66
MissingFormLabel
- 30
Kedem A, Perets A, Gambieli-Bonsthein I. et al .
Vascular endothelial growth factor-releasing scaffolds enhance vascularization and
engraftment of hepatocytes transplanted on liver lobes.
Tissue Eng.
2005;
11
715-722
MissingFormLabel
Korrespondenzadresse
Dr. Henning C. Fiegel
Goethe Universität Frankfurt
Kinderchirurgie
Theodor-Stern-Kai 7
D-60590 Frankfurt
eMail: henning.fiegel@kgu.de