Planta Med 2011; 77(7): 765-770
DOI: 10.1055/s-0030-1250566
Biochemistry, Molecular Biology and Biotechnology
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Cloning and Functional Characterization of a Chalcone Isomerase from Trigonella foenum-graecum L.

Jian-chun Qin1 [*] , Lin Zhu1 [*] , Ming-jun Gao2 , Xian Wu1 , Hong-yu Pan1 , Yan-sheng Zhang3 , Xiang Li1 , 2
  • 1College of Plant Science, Jilin University, Changchun, China
  • 2Saskatoon Research Center, Agriculture and Agri-food Canada, Saskatoon, Canada
  • 3Wuhan Botanical Garden, Chinese Acedamy of Science, Wuhan, China
Further Information

Publication History

received July 1, 2010 revised October 16, 2010

accepted October 25, 2010

Publication Date:
23 November 2010 (online)

Abstract

Flavonoids belong to a group of plant natural products with variable phenolic structures and play important roles in protection against biotic and abiotic stress. Fenugreek (Trigonella foenum-graecum L.) seeds and stems contain flavonol glycosides and isoflavone derivatives. Up to now, the molecular features of fenugreek flavonoid biosynthesis have not been characterized. Here we present cloning of a cDNA encoding a chalcone isomerase (namely TFGCHI‐1) from the leaves of T. foenum-graecum which convert chalcones to flavanones in vitro. Transformation of Arabidopsis loss-of-function tt5 (chi) mutant with a TFGCHI‐1 cDNA complemented tt5 and produced higher levels of flavonol glycosides than wild-type Col-0.

References

  • 1 Yoshikawa M, Murakami T, Komatsu H, Murakami N. Medicinal foodstuffs. IV. Fenugreek seed. (1): structures of trigoneosides Ia, Ib, IIa, IIb, IIIa, and IIIb, new furostanol saponins from the seeds of Indian Trigonella foenum-graecum L.  Chem Pharm Bull. 1997;  45 81-87
  • 2 Liu H, Zhang T, Li M. Clinical study of chronic renal failure patients treated with xiangcao infusion.  Zhongyiyaoxinxi. 1990;  7 20-21
  • 3 Rayyan S, Fossen T, Andersen O M. Flavone C-glycosides from seeds of fenugreek, Trigonella foenum-graecum L.  J Agric Food Chem. 2010;  58 7211-7217
  • 4 Han Y M, Nishibe S, Noguchi Y, Jin Z X. Flavonol glycosides from the stems of Trigonella foenum-graecum.  Phytochemistry. 2001;  58 577-580
  • 5 Wang G R, Tang W Z, Yao Q Q, Zhong H, Liu Y J. New flavonoids with 2BS cell proliferation promoting effect from the seeds of Trigonella foenum-graecum L.  J Nat Med. 2010;  64 358-361
  • 6 Taylor W G, Zulyniak H J, Richars K W, Acharya S N, Bittma S, Elder J L. Variation in diosgenin levels among 10 accessions of fenugreek seeds produced in western Canada.  J Agric Food Chem. 2002;  50 5994-5997
  • 7 Ghosal S, Srivastava R S, Ciiatterjee D C, Dutta S K. Fenugreekine, a new steroidal sapogenin-peptide ester of Trigonella foenum-gracecum.  Phytochemistry. 1974;  13 2247-2251
  • 8 Taylor W G, Zaman M S, Mir Z, Mir P S, Acharya S N, Mears G J, Elder J L. Analysis of steroidal sapogenins from amber fenugreek (Trigonella foenum-graecum) by capillary gas chromatography and combined gas chromatography/mass spectrometry.  J Agric Food Chem. 1997;  45 753-759
  • 9 Haefeli C, Bonfils C, Sauvaire Y. Characterization of a dioxygenase from Trigonella foenum-graecum involved in 4-hydroxyisoleucine biosynthesis.  Phytochemistry. 1997;  44 563-566
  • 10 Peraza-Luna F, Rodriguez-Mendiola M, Arias-Castro C, Bessiere J M, Calva-Calva G. Sotolone production by hairy root cultures of Trigonella foenum-graecum in airlift with mesh bioreactors.  J Agric Food Chem. 2001;  49 6012-6019
  • 11 Tohge T, Yonekura-Sakakibara K, Niida R, Watanabe-Takahashi A, Saito K. Phytochemical genomics in Arabidopsis thaliana: A case study for functional identification of flavonoid biosynthesis genes.  Pure Appl Chem. 2007;  79 811-823
  • 12 Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids.  Annu Rev Plant Biol. 2006;  57 405-430
  • 13 Springob K, Nakajima J, Yamazaki M, Saito K. Recent advances in the biosynthesis and accumulation of anthocyanins.  Nat Prod Rep. 2003;  20 288-303
  • 14 Jez J M, Bowman M E, Dixon R A, Noel J P. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase.  Nat Struct Biol. 2000;  7 786-791
  • 15 Muir S, Collins G, Robinson S, Hughes S, Bovy A, De Vos C HR, van Tunen A J, Verhoeyen M E. Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols.  Nat Biotechnol. 2001;  19 470-474
  • 16 Lu G, Moriyama E N. Vector NTI, a balanced all-in-one sequence analysis suite.  Brief Bioinform. 2004;  5 378-388
  • 17 Tamura K, Dudleym J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.  Mol Biol Evol. 2007;  24 1596-1599
  • 18 Lambert C, Leonard N, De Bolle X, Depiereux E. ESyPred3D: Prediction of proteins 3D structures.  Bioinformatics. 2002;  18 1250-1256
  • 19 Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics.  Proc Natl Acad Sci USA. 1984;  81 8014-8018
  • 20 Southern E M. Southern, detection of specific sequences among DNA fragments separated by gel electrophoresis.  J Mol Biol. 1975;  98 503-517
  • 21 Gao M J, Lydiate D J, Li X, Lui H, Gjetvaj B, Hegedus D D, Rozwadowski K. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings.  Plant Cell. 2009;  21 54-71
  • 22 Joseph M J, Joseph P N. Reaction mechanism of chalcone isomerase.  J Biol Chem. 2002;  11 1361-1369
  • 23 Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.  Plant J. 1998;  16 735-743
  • 24 Gao P, Li X, Cui D, Wu L, Parkin I, Gruber M Y. A new dominant Arabidopsis transparent testa mutant, sk21-D, and modulation of seed flavonoid biosynthesis by KAN4.  Plant Biotechnol J. 2010;  8 979-993
  • 25 Kimura Y, Aoki T, Ayabe S. Chalcone isomerase isozymes with different substrate specificities toward 6′-hydroxy and 6′-deoxychalcones in cultured cells of Glycyrrhiza echinata, a leguminous plant producing 5′-deoxyflavonoids.  Plant Cell Physiol. 2002;  42 1169-1173
  • 26 Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche B A, de Castro E, Lachaize C, Langendijk-Genevaux P S, Sigrist C J. The 20 years of PROSITE.  Nucleic Acids Res. 2008;  36 D245-D249
  • 27 Hur S, Bruice T C. Enzymes do what is expected (chalcone isomerase versus chorismate mutase).  J Am Chem Soc. 2003;  125 1472-1473

1 These authors contributed equally to this work and are considered co-first authors.

Prof. Dr. Xiang Li

College of Plant Science, Jilin University

5333 Xi'An Road

Changchun, 130062

China

Phone: +86 4 31 87 83 57 24

Fax: +86 4 31 87 83 62 51

Email: li_xiang@jlu.edu.cn

Prof. Dr. Yan-sheng Zhang

Wuhan Botanical Garden, Chinese Academy of Sciences

No. 1 Lumo Road

Wuhan, 430074

China

Phone: +86 27 87 61 70 26

Fax: +86 27 87 51 02 51

Email: zhangys@wbgcas.cn

    >