Planta Med 2011; 77(3): 231-235
DOI: 10.1055/s-0030-1250268
Biological and Pharmacological Activity
Original Papers
© Georg Thieme Verlag KG Stuttgart · New York

Osthole Ameliorates Insulin Resistance by Increment of Adiponectin Release in High-Fat and High-Sucrose-Induced Fatty Liver Rats

Zhigang Qi1 , Jie Xue1 , Yan Zhang2 , Hengbin Wang3 , Meilin Xie1
  • 1Department of Pharmacology, Medical College of Soochow University, Suzhou, Jiangsu Province, China
  • 2Wuxi Hospital for Maternal and Child Health Care, Wuxi, Jiangsu Province, China
  • 3Changshu Leiyunshang Pharmaceutical Co. Ltd., Changshu, Jiangsu Province, China
Further Information

Publication History

received May 3, 2010 revised July 22, 2010

accepted July 26, 2010

Publication Date:
17 August 2010 (online)

Preview

Abstract

The objectives of this study were to determine the effect of osthole on the insulin resistance (IR) in high-fat and high-sucrose-induced fatty liver rats and to investigate its potential mechanisms. The rat model was established by orally feeding high-fat and high-sucrose emulsion by gavage for 9 weeks. The experimental rats were treated with osthole 5 and 10 mg/kg, lipanthyl 30 mg/kg, and rosiglitazone 4 mg/kg after oral high-fat and high-sucrose emulsion for 6 weeks and were sacrificed 4 weeks after administration. The total cholesterol (TC), triglycerides (TG), and free fatty acids (FFA) in serum and hepatic tissue, fasting blood glucose (FBG), fasting serum insulin (FINS), serum adiponectin, and liver weight were measured. The homeostasis model assessment of insulin resistance (HOMA‐IR) and coefficient of hepatic weight were calculated. The results showed that after treatment with osthole, the serum levels of TC, TG, and FFA, the contents of TG and FFA in hepatic tissue, and body weight gain were lowered, especially in the osthole 10 mg/kg group (p < 0.05 or p < 0.01). Moreover, the histological evaluation of liver specimens demonstrated that the steatosis and inflammation in liver in osthole-treated groups were improved, especially in the 10 mg/kg group (p < 0.05). Importantly, the levels of FBG, FINS, and HOMA‐IR in the osthole 10 mg/kg group were decreased (p < 0.01), while the level of serum adiponectin in the osthole-treated groups, like PPARα agonist lipanthyl and PPARγ agonist rosiglitazone, was increased (p < 0.05). These results revealed that osthole could improve the IR induced by high-fat and high-sucrose emulsion in fatty liver rats, and its mechanism might be associated with increment of adiponectin release via activation of PPARα/γ pathway.

References

Dr. Meilin Xie

Department of Pharmacology
Medical College of Soochow University

199 Renai Road, Suzhou Industrial Park

Suzhou 215123

Jiangsu Province

China

Phone: + 86 5 12 69 56 65 53

Fax: + 86 5 12 65 88 20 89

Email: xiemeilin@suda.edu.cn