Planta Med 2010; 76(16): 1904-1907
DOI: 10.1055/s-0030-1250047
Natural Product Chemistry
Letters
© Georg Thieme Verlag KG Stuttgart · New York

Biotransformation of 3-Oxo-Oleanolic Acid by Absidia glauca

Na Guo1 , 2 , 3 , Ying Zhao1 , 2 , 3 , Wei-Shuo Fang1 , 2 , 3
  • 1Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Beijing, P. R. China
  • 2Key Laboratory of Biosynthesis of Natural Products, Ministry of Health, Beijing, P. R. China
  • 3Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, P. R. China
Further Information

Publication History

received March 30, 2010 revised April 28, 2010

accepted May 17, 2010

Publication Date:
14 June 2010 (online)

Abstract

3-Oxo-oleanolic acid (1) was biotransformed in growing cultures of the fungus Absidia glauca, resulting in three novel hydroxylated metabolites, identified as 1β-hydroxy-3-oxo-olean-11-en-28,13-lactone (2), 1β,11α-dihydroxy-3-oxo-olean-12-en-28-oic acid (3), and 1β,11α,21β-trihydroxy-3-oxo-olean-12-en-28-oic acid (4).

References

  • 1 Huang D, Ding Y, Li Y, Zhang W, Fang W, Chen X. Anti-tumor activity of a 3-oxo derivative of oleanolic acid.  Cancer Lett. 2006;  233 289-296
  • 2 Sultana N, Ata A. Oleanolic acid and related derivatives as medicinally important compounds.  J Enzym Inhib Med Chem. 2008;  23 739-756
  • 3 Lehman L R, Stewart J D. Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centers.  Curr Org Chem. 2001;  5 439-470
  • 4 Huszcza E, Dmochowska-Gladysz J. Transformations of testosterone and related steroids in Absidia glauca culture.  J Basic Microbiol. 2003;  43 113-120
  • 5 Yi K X, Yang Y L, Yang S K, Xiao Y, Wang Z Y. Application of β-cyclodextrin inclusion technique in the biotransformation of hydrocortisone.  Chin J Pharm. 2006;  37 311-313
  • 6 Konoike T, Takahashi K, Araki Y, Horibe I. Practical partial synthesis of myriceric acid A, an endothelin receptor antagonist, from oleanolic acid.  J Org Chem. 1997;  62 960-966
  • 7 Hikino H, Nabetani S, Takemoto T. Microbial transformation of oleanolic acid (1).  Yakugaku Zasshi. 1969;  89 809-813
  • 8 Hikino H, Nabetani S, Takemoto T. Microbial transformation of oleanolic acid (4).  Yakugaku Zasshi. 1972;  92 1528-1533
  • 9 Almanza G, Balderrama L. Clerodane diterpenoids and ursane triterpenoid from Salvia haenkei. Computer-assisted structural elucidation.  Tetrahedron. 1997;  53 14719-14728
  • 10 Nick A, Wright A D, Sticher O. Antibacterial triterpemoid acids from Dillenia papuana.  J Nat Prod. 1994;  57 1245-1250
  • 11 Mallavadhani U V, Narasimhan K, Sudhakar A V S, Mahapatra A, Li W, Breemen R B. Three new pentacyclic triterpenes and some flavonoids from the fruits of an Indian ayurvedic plant Dendrophthoe falcata and their estrogen receptor binding activity.  Chem Pharm Bull. 2006;  54 740-744
  • 12 Choudhary M I, Batool I, Khan S N, Sultana N, Shah S A, Ur-Rahman A. Microbial transformation of oleanolic acid by Fusarium lini and α-glucosidase inhibitory activity of its transformed products.  Nat Prod Res. 2008;  22 489-494
  • 13 Collins D O, Ruddock P L D, Grasse G C, Reynolds W F, Reese P B. Microbial transformation of cadina-4,10(15)-dien-3-one, aromadendr-1(10)-en-9-one and methyl ursolate by Mucor plumbeus ATCC4740.  Phytochemistry. 2002;  59 479-488
  • 14 Cáceres-Castillo D, Mena-Rejón G J, Cedillo-Rivera R, Quijano L. 21β-Hydroxy-oleanane-type triterpenes from Hippocratea excelsa.  Phytochemistry. 2008;  69 1057-1064
  • 15 Chiang T C, Chang H M, Mak T C W. New oleanene-type triterpenes from Abrus precatorius and X-ray crystal structure of abrusgenic acid-methanol 1: 1 solvate.  Planta Med. 1983;  49 165-169

Prof. Dr. Wei-Shuo Fang

Institute of Materia Medica
Chinese Academy of Medical Sciences & Peking Union Medical College

1 Xiannongtan Street

100050 Beijing

People's Republic of China

Phone: + 86 10 63 16 52 29

Fax: + 86 10 63 01 77 57

Email: wfang@imm.ac.cn

>