Horm Metab Res 2010; 42(7): 528-534
DOI: 10.1055/s-0030-1249629
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Etomidate Unmasks Intraadrenal Regulation of Steroidogenesis and Proliferation in Adrenal Cortical Cell Lines

S. Hahner1 , [*] , A. Stürmer1 , [*] , M. Fassnacht1 , R. W. Hartmann2 , K. Schewe2 , S. Cochran1 , M. Zink1 , A. Schirbel3 , B. Allolio1
  • 1Endocrinology & Diabetes Unit, Department of Medicine I, University of Würzburg, Würzburg, Germany
  • 2Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
  • 3Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
Further Information

Publication History

received 20.07.2009

accepted 22.02.2010

Publication Date:
29 March 2010 (online)

Abstract

To characterize intraadrenal adaptations for inhibition of cortisol synthesis, we analyzed the effects of etomidate (ETO) on steroid hormone secretion and expression of key regulators of steroidogenesis and proliferation in human NCI-h295 adrenocortical cancer cells. Etomidate potently blocked 11β-hydroxylase (CYP11B1), aldosterone synthase (CYP11B2), and side chain cleavage enzyme (CYP11A1). This inhibition of steroidogenesis was associated with increased expression of steroidogenic acute regulatory protein (StAR), and CYP11A1 and 17α-hydroxylase/17, 20-lyase (CYP17A1) protein levels, but not of the respective mRNA levels. Promoter activity of CYP11A1 and melanocortin 2 receptor (MC2R) was not increased by etomidate in treated cells compared to controls. The increase in protein levels was partially reversed by cycloheximide suggesting post-transcriptional mechanisms but also protein stabilization as underlying cause. Furthermore, ETO exhibited antiproliferative activity paralleled by a decrease in phosphorylation of MEK and ERK1, 2. In summary, ETO exhibits pleiotropic effects on adrenal function in vitro. Inhibition of steroidogenesis is followed by increased levels of steroidogenic key proteins and reduced proliferation. These changes reflect adaptations to maintain steroidogenesis at the cost of adrenal proliferation.

References

  • 1 de Jong FH, Mallios C, Jansen C, Scheck PA, Lamberts SW. Etomidate suppresses adrenocortical function by inhibition of 11 beta-hydroxylation.  J Clin Endocrinol Metab. 1984;  59 1143-1147
  • 2 Kenyon CJ, Young J, Gray CE, Fraser R. Inhibition by etomidate of steroidogenesis in isolated bovine adrenal cells.  J Clin Endocrinol Metab. 1984;  58 947-949
  • 3 Varga I, Racz K, Kiss R, Futo L, Toth M, Sergev O, Gláz E. Direct inhibitory effect of etomidate on corticosteroid secretion in human pathologic adrenocortical cells.  Steroids. 1993;  58 64-68
  • 4 Wagner RL, White PF. Etomidate inhibits adrenocortical function in surgical patients.  Anesthesiology. 1984;  61 647-651
  • 5 Wagner RL, White PF, Kan PB, Rosenthal MH, Feldman D. Inhibition of adrenal steroidogenesis by the anesthetic etomidate.  N Engl J Med. 1984;  310 1415-1421
  • 6 Wada A, Ohnishi T, Nonaka Y, Okamoto M. Inhibition of bovine adrenocortical mitochondrial cytochrome P-450(11)beta-mediated reactions by imidazole derivatives and mineralocorticoid analogs.  J Steroid Biochem. 1988;  31 803-808
  • 7 Lamberts SW, Bons EG, Bruining HA, de Jong FH. Differential effects of the imidazole derivatives etomidate, ketoconazole and miconazole and of metyrapone on the secretion of cortisol and its precursors by human adrenocortical cells.  J Pharmacol Exp Ther. 1987;  240 259-264
  • 8 Fassnacht M, Hahner S, Beuschlein F, Klink A, Reincke M, Allolio B. New mechanisms of adrenostatic compounds in a human adrenocortical cancer cell line.  Eur J Clin Invest. 2000;  30 (S 03) 76-82
  • 9 Allolio B, Stuttmann R, Fischer H, Leonhard W, Winkelmann W. Long-term etomidate and adrenocortical suppression.  Lancet. 1983;  2 (8350) 626
  • 10 Krakoff J, Koch CA, Calis KA, Alexander RH, Nieman LK. Use of a parenteral propylene glycol-containing etomidate preparation for the long-term management of ectopic Cushing's syndrome.  J Clin Endocrinol Metab. 2001;  86 4104-4108
  • 11 Schulte HM, Benker G, Reinwein D, Sippell WG, Allolio B. Infusion of low dose etomidate: correction of hypercortisolemia in patients with Cushing's syndrome and dose-response relationship in normal subjects.  J Clin Endocrinol Metab. 1990;  70 1426-1430
  • 12 Bergstrom M, Juhlin C, Bonasera TA, Sundin A, Rastad J, Akerstrom G, Långström B. PET imaging of adrenal cortical tumors with the 11beta-hydroxylase tracer 11C-metomidate.  J Nucl Med. 2000;  41 275-282
  • 13 Bergstrom M, Sorensen J, Kahn TS, Juhlin C, Eriksson B, Sundin A, Sundin A, Bonasera TA, Fasth K, Långström B. PET with[11C]-Metomidate for the Visualization of Adrenocortical Tumors and Discrimination from Other Lesions.  Clin Positron Imaging. 1999;  2 339
  • 14 Hennings J, Lindhe O, Bergstrom M, Langstrom B, Sundin A, Hellman P. [11C] metomidate positron emission tomography of adrenocortical tumors in correlation with histopathological findings.  J Clin Endocrinol Metab. 2006;  91 1410-1414
  • 15 Khan TS, Sundin A, Juhlin C, Langstrom B, Bergstrom M, Eriksson B. 11C-metomidate PET imaging of adrenocortical cancer.  Eur J Nucl Med Mol Imaging. 2003;  30 403-410
  • 16 Minn H, Salonen A, Friberg J, Roivainen A, Viljanen T, Langsjo J, Salmi J, Välimäki M, Någren K, Nuutila P. Imaging of adrenal incidentalomas with PET using (11)C-metomidate and (18)F-FDG.  J Nucl Med. 2004;  45 972-979
  • 17 Zettinig G, Mitterhauser M, Wadsak W, Becherer A, Pirich C, Vierhapper H, Niederle B, Dudczak R, Kletter K. Positron emission tomography imaging of adrenal masses: (18)F-fluorodeoxyglucose and the 11beta-hydroxylase tracer (11)C-metomidate.  Eur J Nucl Med Mol Imaging. 2004;  31 1224-1230
  • 18 Fassnacht M, Beuschlein F, Vay S, Mora P, Allolio B, Reincke M. Aminoglutethimide suppresses adrenocorticotropin receptor expression in the NCI-h295 adrenocortical tumor cell line.  J Endocrinol. 1998;  159 35-42
  • 19 Gazdar AF, Oie HK, Shackleton CH, Chen TR, Triche TJ, Myers CE, Chrousos GP, Brennan MF, Stein CA, La Rocca RV. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis.  Cancer Res. 1990;  50 5488-5496
  • 20 Denner K, Doehmer J, Bernhardt R. Cloning of CYP11B1 and CYP11B2 from normal human adrenal and their functional expression in COS-7 and V79 Chinese hamster cells.  Endocr Res. 1995;  21 443-448
  • 21 Denner K, Vogel R, Schmalix W, Doehmer J, Bernhardt R. Cloning and stable expression of the human mitochondrial cytochrome P45011B1 cDNA in V79 Chinese hamster cells and their application for testing of potential inhibitors.  Pharmacogenetics. 1995;  5 89-96
  • 22 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 1970;  227 (5259) 680-685
  • 23 Huang MC, Miller WL. Creation and activity of COS-1 cells stably expressing the F2 fusion of the human cholesterol side-chain cleavage enzyme system.  Endocrinology. 2001;  142 2569-2576
  • 24 Sharp S, Barker EV, Coughtrie MW, Lowenstein PR, Hume R. Immunochemical characterisation of a dehydroepiandrosterone sulfotransferase in rats and humans.  Eur J Biochem. 1993;  211 539-548
  • 25 Bumke-Vogt C, Bahr V, Diederich S, Herrmann SM, Anagnostopoulos I, Oelkers W, Quinkler M. Expression of the progesterone receptor and progesterone-metabolising enzymes in the female and male human kidney.  J Endocrinol. 2002;  175 349-364
  • 26 Ehmer PB, Bureik M, Bernhardt R, Muller U, Hartmann RW. Development of a test system for inhibitors of human aldosterone synthase (CYP11B2): screening in fission yeast and evaluation of selectivity in V79 cells.  J Steroid Biochem Mol Biol. 2002;  81 173-179
  • 27 Ulmschneider S, Muller-Vieira U, Mitrenga M, Hartmann RW, Oberwinkler-Marchais S, Klein CD, Bureik M, Bernhardt R, Antes I, Lengauer T. Synthesis and evaluation of imidazolylmethylenetetrahydronaphthalenes and imidazolylmethyleneindanes: potent inhibitors of aldosterone synthase.  J Med Chem. 2005;  48 1796-1805
  • 28 Zwermann O, Beuschlein F, Lalli E, Klink A, Sassone-Corsi P, Reincke M. Clinical and molecular evidence for DAX-1 inhibition of steroidogenic factor-1-dependent ACTH receptor gene expression.  Eur J Endocrinol. 2005;  152 769-776
  • 29 Clark BJ, Soo SC, Caron KM, Ikeda Y, Parker KL, Stocco DM. Hormonal and developmental regulation of the steroidogenic acute regulatory protein.  Mol Endocrinol. 1995;  9 1346-1355
  • 30 Stocco DM, Clark BJ. Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis.  Biochem Pharmacol. 1996;  51 197-205
  • 31 Caron KM, Ikeda Y, Soo SC, Stocco DM, Parker KL, Clark BJ. Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein.  Mol Endocrinol. 1997;  11 138-147
  • 32 Clark BJ, Combs R, Hales KH, Hales DB, Stocco DM. Inhibition of transcription affects synthesis of steroidogenic acute regulatory protein and steroidogenesis in MA-10 mouse Leydig tumor cells.  Endocrinology. 1997;  138 4893-4901
  • 33 Liu J, Heikkila P, Kahri AI, Voutilainen R. Expression of the steroidogenic acute regulatory protein mRNA in adrenal tumors and cultured adrenal cells.  J Endocrinol. 1996;  150 43-50
  • 34 Dardis A, Miller WL. Dexamethasone does not exert direct intracellular feedback on steroidogenesis in human adrenal NCI-H295A cells.  J Endocrinol. 2003;  179 131-142
  • 35 Christenson LK, McAllister JM, Martin KO, Javitt NB, Osborne TF, Strauss 3rd JF. Oxysterol regulation of steroidogenic acute regulatory protein gene expression Structural specificity and transcriptional and posttranscriptional actions.  J Biol Chem. 1998;  273 30729-30735
  • 36 King SR, Matassa AA, White EK, Walsh LP, Jo Y, Rao RM, Stocco DM, Reyland ME. Oxysterols regulate expression of the steroidogenic acute regulatory protein.  J Mol Endocrinol. 2004;  32 507-517
  • 37 Reyland ME, Evans RM, White EK. Lipoproteins regulate expression of the steroidogenic acute regulatory protein (StAR) in mouse adrenocortical cells.  J Biol Chem. 2000;  275 36637-36644
  • 38 Gonzalez FJ, Ueno T, Umeno M, Song BJ, Veech RL, Gelboin HV. Microsomal ethanol oxidizing system: transcriptional and posttranscriptional regulation of cytochrome P450, CYP2E1.  Alcohol Alcohol Suppl. 1991;  1 97-101
  • 39 Kuhn-Velten WN, Lohr JB. Ligand dependence of cytochrome P450c17 protection against proteolytic inactivation: structural, methodological and functional implications.  FEBS Lett. 1996;  388 21-25
  • 40 Granot Z, Geiss-Friedlander R, Melamed-Book N, Eimerl S, Timberg R, Weiss AM, Hales KH, Hales DB, Stocco DM, Orly J. Proteolysis of normal and mutated steroidogenic acute regulatory proteins in the mitochondria: the fate of unwanted proteins.  Mol Endocrinol. 2003;  17 2461-2476
  • 41 Fassnacht M, Hahner S, Hansen IA, Kreutzberger T, Zink M, Adermann K, Jakob F, Troppmair J, Allolio B. N-terminal proopiomelanocortin acts as a mitogen in adrenocortical tumor cells and decreases adrenal steroidogenesis.  J Clin Endocrinol Metab. 2003;  88 2171-2179
  • 42 Schulte DM, Shapiro I, Reincke M, Beuschlein F. Expression and spatio-temporal distribution of differentiation and proliferation markers during mouse adrenal development.  Gene Expr Patterns. 2007;  7 72-81
  • 43 Joannard F, Rissel M, Gilot D, Anderson A, Orfila-Lefeuvre L, Guillouzo A, Atfi A, Lagadic-Gossmann D. Role for mitogen-activated protein kinases in phenobarbital-induced expression of cytochrome P450 2B in primary cultures of rat hepatocytes.  Toxicol Lett. 2006;  161 61-72
  • 44 Sewer MB, Waterman MR. CAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells.  J Biol Chem. 2003;  278 8106-8111

1 Both authors contributed equally to this work.

Correspondence

B. AllolioMD 

Endocrinology & Diabetes Unit

Department of Medicine

University of Würzburg

Oberdürrbacher-Straße 6

97080 Würzburg

Germany

Phone: +49/931/201 39020

Fax: +49/931/201 639200

Email: allolio_b@medizin.uni-wuerzburg.de

    >