RSS-Feed abonnieren
DOI: 10.1055/s-0030-1249019
© Georg Thieme Verlag KG Stuttgart · New York
Comparative Proteomic Analysis of Proteins Influenced by Melanin-concentrating Hormone and Melanin-concentrating Hormone Receptor 2 Interaction
Publikationsverlauf
received 02.04.2009
accepted after second revision 01.02.2010
Publikationsdatum:
25. März 2010 (online)

Abstract
Melanin-concentrating hormone receptor 2 (MCHR2), a second G protein-coupled receptor for melanin-concentrating hormone (MCH), has been known for many years. However, its physiological function is poorly understood. To identify the proteins involved in MCHR2 physiological function, a comparative proteomic analysis of protein expression in SH-SY5Y cells stably expressing human MCHR2 (SH-SY5Y-MCHR2) and control SH-SY5Y cells (SH-SY5Y-mock) – both treated with MCH – was conducted. Significant changes were observed in the expression of 34 proteins, including isocitrate dehydrogenase (NAD) subunit alpha, mitochondrial (IDH3A), phosphoenolpyruvate carboxykinase 1 (PCK1), 6-phosphofructo-2-kinase/fructose-2.6-biphosphatase 4 (PFKFB4), insulin-induced gene 2 protein (INSIG2), and acyl-coenzyme A thioesterase 8 (ACOT8). Among the proteins, IDH3A, PCK1, PFKFB4 increased significantly, and INSIG2, ACOT8 decreased significantly in experimental cells compared with control cells; these findings were further confirmed by semi-quantitative RT-PCR and Western blot analysis. The comparative proteome data may provide a valuable clue to further understand MCHR2 physiological function, and several differentially regulated proteins may be used as target proteins for the development of novel drugs.
Key words
melanin-concentrating hormone receptor 2 - SH-SY5Y cells - proteomics - obesity - diabetes mellitus type 2
References
- 1
Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Bansal A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LH, Howard AD, Liu Q.
Identification and characterization of a second melanin-concentrating hormone receptor,
MCH-2R.
Proc Natl Acad Sci U S A.
2001;
98
7564-7569
Reference Ris Wihthout Link
- 2
Rodriguez M, Beauverger P, Naime I, Rique H, Ouvry C, Souchaud S, Dromaint S, Nagel N, Suply T, Audinot V, Boutin JA, Galizzi JP.
Cloning and molecular characterization of the novel human melanin-concentrating hormone
receptor MCH2.
Mol Pharmacol.
2001;
60
632-639
Reference Ris Wihthout Link
- 3
Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, Bergsma DJ, Gloger IS, Levy DS, Chambers JK, Muir AI.
Molecular cloning and functional characterization of MCH2, a novel human MCH receptor.
J Biol Chem.
2001;
276
20125-20129
Reference Ris Wihthout Link
- 4
Shimada M, Tritos NA, Lowell BB, Flier JS, Maratos-Flier E.
Mice lacking melanin-concentrating hormone are hypophagic and lean.
Nature.
1998;
396
670-674
Reference Ris Wihthout Link
- 5
Rossi M, Beak SA, Choi SJ, Small CJ, Morgan DG, Ghatei MA, Smith DM, Bloom SR.
Investigation of the feeding effects of melanin concentrating hormone on food intake-action
independent of galanin and the melanocortin receptors.
Brain Res.
1999;
846
164-170
Reference Ris Wihthout Link
- 6
Huang Q, Viale A, Picard F, Nahon J, Richard D.
Effects of leptin on melanin-concentrating hormone expression in the brain of lean
and obese Lep(ob)/Lep(ob) mice.
Neuroendocrinology.
1999;
69
145-153
Reference Ris Wihthout Link
- 7
Chen Y, Hu C, Hsu CK, Zhang Q, Bi C, Asnicar M, Hsiung HM, Fox N, Slieker LJ, Yang DD, Heiman ML, Shi Y.
Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia
and resistance to diet-induced obesity.
Endocrinology.
2002;
143
2469-2477
Reference Ris Wihthout Link
- 8
Mashiko S, Ishihara A, Gomori A, Moriya R, Ito M, Iwaasa H, Matsuda M, Feng Y, Shen Z, Marsh DJ, Bednarek MA, MacNeil DJ, Kanatani A.
Antiobesity effect of a melanin-concentrating hormone 1 receptor antagonist in diet-induced
obese mice.
Endocrinology.
2005;
146
3080-3086
Reference Ris Wihthout Link
- 9
Tan CP, Sano H, Iwaasa H, Pan J, Sailer AW, Hreniuk DL, Feighner SD, Palyha OC, Pong SS, Figueroa DJ, Austin CP, Jiang MM, Yu H, Ito J, Ito M, Ito M, Guan XM, MacNeil DJ, Kanatani A, Van der Ploeg LH, Howard AD.
Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression.
Genomics.
2002;
79
785-792
Reference Ris Wihthout Link
- 10
Blackstock WP, Weir MP.
Proteomics:quantitative and physical mapping of cellular proteins.
Trends Biotechno.
1999;
17
121-127
Reference Ris Wihthout Link
- 11
Sinz A, Bantscheff M, Mikkat S, Ringel B, Drynda S, Kekow J, Thiesen HJ, Glocker MO.
Mass spectrometric proteome analyses of synovial fluids and plasmas from patients
suffering from rheumatoid arthritis and comparison to reactive arthritis or osteoarthritis.
Electrophoresis.
2002;
23
3445-3456
Reference Ris Wihthout Link
- 12
Kang S, Kim EY, Bahn YJ, Chung JW, Lee do H, Park SG, Yoon TS, Park BC, Bae KH.
A proteomic analysis of the effect of MAPK pathway activation on L-glutamate-induced
neuronal cell death.
Cell Mol Biol Lett.
2007;
12
139-147
Reference Ris Wihthout Link
- 13
Ryu SI, Kim WK, Cho HJ, Lee PY, Jung H, Yoon TS, Moon JH, Kang S, Poo H, Bae KH, Lee SC.
Phosphoproteomic analysis of AML14.3D10 cell line as a model system of eosinophilia.
J Biochem Mol Biol.
2007;
40
765-772
Reference Ris Wihthout Link
- 14
Yoon SW, Kim TY, Sung MH, Kim CJ, Poo H.
Comparative proteomic analysis of peripheral blood eosinophils from healthy donors
and atopic dermatitis patients with eosinophilia.
Proteomics.
2005;
5
1987-1995
Reference Ris Wihthout Link
- 15
Kang TH, Bae KH, Yu MJ, Kim WK, Hwang HR, Jung H, Lee PY, Kang S, Yoon TS, Park SG, Ryu SE, Lee SC.
Phosphoproteomic analysis of neuronal cell death by glutamate-induced oxidative stress.
Proteomics.
2007;
7
2624-2635
Reference Ris Wihthout Link
- 16
Na KS, Park BC, Jang M, Cho S, Lee do H, Kang S, Lee CK, Bae KH, Park SG.
Protein disulfide isomerase is cleaved by caspase-3 and -7 during apoptosis.
Mol Cells.
2007;
24
261-267
Reference Ris Wihthout Link
- 17
Liu R, Li Z, Bai S, Zhang H, Tang M, Lei Y, Chen L, Liang S, Zhao YL, Wei Y, Huang C.
Mechanism of cancer cell adaptation to metabolic stress: proteomics identification
of a novel thyroid hormone-mediated gastric carcinogenic signaling pathway.
Mol Cell Proteomics.
2009;
8
70-85
Reference Ris Wihthout Link
- 18
Audinot V, Beauverger P, Lahaye C, Suply T, Rodriguez M, Ouvry C, Lamamy V, Imbert J, Rique H, Nahon JL, Galizzi JP, Canet E, Levens N, Fauchere JL, Boutin JA.
Structure-Activity Relationship Studies of Melanin-concentrating Hormone (MCH)-related
Peptide Ligands at SLC-1, the Human MCH Receptor.
J Biol Chem.
2001;
276
13554-13562
Reference Ris Wihthout Link
- 19
Rabilloud T, Adessi C, Giraudel A, Lunardi J.
Improvement of the solubilization of proteins in two-dimensional electrophoresis with
immobilized pH gradients.
Electrophoresis.
1997;
18
307-316
Reference Ris Wihthout Link
- 20
Gorg A, Postel W, Weser J, Gunther S, Strahler JR, Hanash SM, Somerlot L.
Elimination of point straking on silver-stained two-dimensional gels by addition of
iodoacetamide to the equilibration buffer.
Electrophoresis.
1987;
8
122-124
Reference Ris Wihthout Link
- 21
Meyre D, Lecoeur C, Delplanque J, Francke S, Vatin V, Durand E, Weill J, Dina C, Froguel P.
A genome-wide scan for childhood obesity-associated traits in French families shows
significant linkage on chromosome 6q22.31-q23.2.
Diabetes.
2004;
53
803-811
Reference Ris Wihthout Link
- 22
Gong Y, Lee JN, Brown MS, Goldstein JL, Ye J.
Juxtamembranous aspartic acid in Insig-1 and Insig-2 is required for cholesterol homeostasis.
Proc Natl Acad Sci USA.
2006;
103
6154-6159
Reference Ris Wihthout Link
- 23
Takaishi K, Duplomb L, Wang MY, Li J, Unger RH.
Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic
fatty rats and in fasted/refed normal rats.
Proc Natl Acad Sci USA.
2004;
101
7106-7111
Reference Ris Wihthout Link
- 24
Cheverud JM, Ehrich TH, Hrbek T, Kenney JP, Pletscher LS, Semenkovich CF.
Quantitative trait loci for obesity- and diabetes-related traits and their dietary
responses to high-fat feeding in LGXSM recombinant inbred mouse strains.
Diabetes.
2004;
53
3328-3336
Reference Ris Wihthout Link
- 25
Orkunoglu-Suer FE, Gordish-Dressman H, Clarkson PM, Thompson PD, Angelopoulos TJ, Gordon PM, Moyna NM, Pescatello LS, Visich PS, Zoeller RF, Harmon B, Seip RL, Hoffman EP, Devaney JM.
INSIG2 gene polymorphism is associated with increased subcutaneous fat in women and
poor response to resistance training in men.
BMC Med Genet.
2008;
9
117
Reference Ris Wihthout Link
- 26
Krapivner S, Popov S, Chernogubova E, Hellénius ML, Fisher RM, Hamsten A, van’t Hooft FM.
Insulin-induced gene 2 involvement in human adipocyte metabolism and body weight regulation.
J Clin Endocrinol Metab.
2008;
93
1995-2001
Reference Ris Wihthout Link
- 27
Raghow R, Yellaturu C, Deng X, Park EA, Elam MB.
SREBPs: the crossroads of physiological and pathological lipid homeostasis.
Trends Endocrinol Metab.
2008;
19
65-73
Reference Ris Wihthout Link
- 28
Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL.
Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols
block transport by binding to Insig.
Proc Natl Acad Sci USA.
2007;
104
6511-6518
Reference Ris Wihthout Link
- 29
McPherson R, Gauthier A.
Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific
modulation of lipid synthesis.
Biochem Cell Biol.
2004;
82
201-211
Reference Ris Wihthout Link
- 30
Manzano A, Pérez JX, Nadal M, Estivill X, Lange A, Bartrons R.
Cloning, expression and chromosomal localization of a human testis 6-phosphofructo-2-kinase/fructose-2.6-bisphosphatase
gene.
Gene.
1999;
229
83-89
Reference Ris Wihthout Link
- 31
Van Schaftingen E, Jett MF, Hue L, Hers HG.
Control of liver 6-phosphofructokinase by fructose 2.6-bisphosphate and other effectors.
Proc Natl Acad Sci U S A.
1981;
78
3483-3486
Reference Ris Wihthout Link
- 32
Beale EG, Harvey BJ, Forest C.
PCK1 and PCK2 as candidate diabetes and obesity genes.
Cell Biochem Biophys.
2007;
48
89-95
Reference Ris Wihthout Link
- 33
Beale EG, Hammer RE, Antoine B, Forest C.
Disregulated glyceroneogenesis: PCK1 as a candidate diabetes and obesity gene.
Trends Endocrinol Metab.
2004;
15
129-135
Reference Ris Wihthout Link
- 34
Gómez-Valadés AG, Méndez-Lucas A, Vidal-Alabró A, Blasco FX, Chillon M, Bartrons R, Bermúdez J, Perales JC.
Pck1 gene silencing in the liver improves glycemia control, insulin sensitivity, and
dyslipidemia in db/db mice.
Diabetes.
2008;
57
2199-2210
Reference Ris Wihthout Link
- 35
Watkins PA.
Fatty acid activation.
Prog Lipid Res.
1997;
36
55-83
Reference Ris Wihthout Link
- 36
Watkins PA, Maiguel D, Jia Z, Pevsner J.
Evidence for 26 distinct acyl-coenzyme A synthetase genes in the human genome.
J Lipid Res.
2007;
48
2736-2750
Reference Ris Wihthout Link
- 37
Westin MA, Hunt MC, Alexson SE.
The identification of a succinyl-CoA thioesterase suggests a novel pathway for succinate
production in peroxisomes.
J Biol Chem.
2005;
280
38125-38132
Reference Ris Wihthout Link
- 38
Randle PJ, Garland PB, Hales CN, Newsholme EA.
The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances
of diabetes mellitus.
Lancet.
1963;
1
785-789
Reference Ris Wihthout Link
- 39
Randle PJ, Garland PB, Newsholme EA, Hales CN.
The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus.
Ann N Y Acad Sci.
1965;
131
324-333
Reference Ris Wihthout Link
- 40
Fu Y, Buryanovskyy L, Zhang Z.
Quinone reductase 2 is a catechol quinone reductase.
J Biol Chem.
2008;
283
23829-23835
Reference Ris Wihthout Link
- 41
Harada S, Tachikawa H, Kawanishi Y.
A possible association between an insertion/deletion polymorphism of the NQO2 gene
and schizophrenia.
Psychiatr Genet.
2003;
13
205-209
Reference Ris Wihthout Link
Correspondence
Prof. Fang-Zhou Song
Molecular Medicine & Cancer
Research Center
Chongqing Medical University
Chongqing 400016
China
Telefon: +86/23/684 859 58
Fax: +86/23/684 859 58
eMail: fzsongcq@163.com