ABSTRACT
For a disease with <80 years of history, clinical and basic research into thrombotic
thrombocytopenic purpura (TTP) has been significantly accelerated since the identification
of unusually large von Willebrand factor (VWF) multimers and deficiency of ADAMTS-13
(A Disintegrin And Metalloproteinase with Thrombospondin-1-like domains) as the potential cause. The VWF-cleaving metalloprotease ADAMTS-13
has since been extensively characterized and its biological action tested in vitro
and in vivo. There have also been considerable efforts to understand the interaction
between ADAMTS-13 and its substrate VWF, as well as its biological regulation. This
review focuses on recent advances in our understanding of the biology of VWF cleavage
by ADAMTS-13 and how this newly gained knowledge will eventually help the clinical
management of patients with TTP. This review also discusses the potential for ADAMTS-13
as a therapeutic drug for thrombotic conditions other than TTP.
KEYWORDS
von Willebrand factor - ADAMTS-13 - fluid shear stress - thrombotic thrombocytopenic
purpura - TTP
REFERENCES
- 1
Moschcowitz E.
Hyaline thrombosis of the terminal arterioles and capillaries: a hitherto undescribed
disease.
Proc N Y Pathol Soc.
1924;
24
21
- 2
Amorosi E L, Ultamann J E.
Thrombocytopenic purpura: report of 16 cases and review of the literature.
Medicine.
1966;
45
139-159
- 3
Moake J L, Rudy C K, Troll J H et al..
Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing
thrombotic thrombocytopenic purpura.
N Engl J Med.
1982;
307(23)
1432-1435
- 4
Moake J L, Turner N A, Stathopoulos N A, Nolasco L H, Hellums J D.
Involvement of large plasma von Willebrand factor (VWF) multimers and unusually large
VWF forms derived from endothelial cells in shear stress-induced platelet aggregation.
J Clin Invest.
1986;
78(6)
1456-1461
- 5
Moake J L, Turner N A, Stathopoulos N A, Nolasco L, Hellums J D.
Shear-induced platelet aggregation can be mediated by VWF released from platelets,
as well as by exogenous large or unusually large VWF multimers, requires adenosine
diphosphate, and is resistant to aspirin.
Blood.
1988;
71(5)
1366-1374
- 6
Arya M, Anvari B, Romo G M et al..
Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds
with the platelet glycoprotein Ib-IX complex: studies using optical tweezers.
Blood.
2002;
99(11)
3971-3977
- 7
Furlan M, Robles R, Lämmle B.
Partial purification and characterization of a protease from human plasma cleaving
von Willebrand factor to fragments produced by in vivo proteolysis.
Blood.
1996;
87(10)
4223-4234
- 8
Tsai H M.
Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on
its conformation and requires calcium ion.
Blood.
1996;
87(10)
4235-4244
- 9
Fujikawa K, Suzuki H, McMullen B, Chung D.
Purification of human von Willebrand factor-cleaving protease and its identification
as a new member of the metalloproteinase family.
Blood.
2001;
98(6)
1662-1666
- 10
Levy G G, Nichols W C, Lian E C et al..
Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic
purpura.
Nature.
2001;
413(6855)
488-494
- 11
Zheng X, Chung D, Takayama T K, Majerus E M, Sadler J E, Fujikawa K.
Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease
involved in thrombotic thrombocytopenic purpura.
J Biol Chem.
2001;
276(44)
41059-41063
- 12
Furlan M, Robles R, Solenthaler M, Lämmle B.
Acquired deficiency of von Willebrand factor-cleaving protease in a patient with thrombotic
thrombocytopenic purpura.
Blood.
1998;
91(8)
2839-2846
- 13
Tsai H M, Lian E C.
Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic
purpura.
N Engl J Med.
1998;
339(22)
1585-1594
- 14
Scheiflinger F, Knöbl P, Trattner B et al..
Nonneutralizing IgM and IgG antibodies to von Willebrand factor-cleaving protease
(ADAMTS-13) in a patient with thrombotic thrombocytopenic purpura.
Blood.
2003;
102(9)
3241-3243
- 15
Weibel E R, Palade G E.
New cytoplasmic components in arterial endothelia.
J Cell Biol.
1964;
23
101-112
- 16
Bowie E J, Solberg Jr L A, Fass D N et al..
Transplantation of normal bone marrow into a pig with severe von Willebrand’s disease.
J Clin Invest.
1986;
78(1)
26-30
- 17
Ginsburg D, Handin R I, Bonthron D T et al..
Human von Willebrand factor (VWF): isolation of complementary DNA (cDNA) clones and
chromosomal localization.
Science.
1985;
228(4706)
1401-1406
- 18
Wagner D D, Marder V J.
Biosynthesis of von Willebrand protein by human endothelial cells: processing steps
and their intracellular localization.
J Cell Biol.
1984;
99(6)
2123-2130
- 19
Wagner D D, Lawrence S O, Ohlsson-Wilhelm B M, Fay P J, Marder V J.
Topology and order of formation of interchain disulfide bonds in von Willebrand factor.
Blood.
1987;
69(1)
27-32
- 20
Voorberg J, Fontijn R, Calafat J, Janssen H, van Mourik J A, Pannekoek H.
Assembly and routing of von Willebrand factor variants: the requirements for disulfide-linked
dimerization reside within the carboxy-terminal 151 amino acids.
J Cell Biol.
1991;
113(1)
195-205
- 21
Katsumi A, Tuley E A, Bodó I, Sadler J E.
Localization of disulfide bonds in the cystine knot domain of human von Willebrand
factor.
J Biol Chem.
2000;
275(33)
25585-25594
- 22
Purvis A R, Gross J, Dang L T et al..
Two Cys residues essential for von Willebrand factor multimer assembly in the Golgi.
Proc Natl Acad Sci U S A.
2007;
104(40)
15647-15652
- 23
Wagner D D, Fay P J, Sporn L A, Sinha S, Lawrence S O, Marder V J.
Divergent fates of von Willebrand factor and its propolypeptide (von Willebrand antigen
II) after secretion from endothelial cells.
Proc Natl Acad Sci U S A.
1987;
84(7)
1955-1959
- 24
Verweij C L, Hart M, Pannekoek H.
Expression of variant von Willebrand factor (VWF) cDNA in heterologous cells: requirement
of the pro-polypeptide in VWF multimer formation.
EMBO J.
1987;
6(10)
2885-2890
- 25
Wise R J, Pittman D D, Handin R I, Kaufman R J, Orkin S H.
The propeptide of von Willebrand factor independently mediates the assembly of von
Willebrand multimers.
Cell.
1988;
52(2)
229-236
- 26
Sporn L A, Marder V J, Wagner D D.
Inducible secretion of large, biologically potent von Willebrand factor multimers.
Cell.
1986;
46(2)
185-190
- 27
Mannucci P M.
Platelet von Willebrand factor in inherited and acquired bleeding disorders.
Proc Natl Acad Sci U S A.
1995;
92(7)
2428-2432
- 28
Huang R H, Wang Y, Roth R et al..
Assembly of Weibel-Palade body-like tubules from N-terminal domains of von Willebrand
factor.
Proc Natl Acad Sci U S A.
2008;
105(2)
482-487
- 29
Berriman J A, Li S, Hewlett L J et al..
Structural organization of Weibel-Palade bodies revealed by cryo-EM of vitrified endothelial
cells.
Proc Natl Acad Sci U S A.
2009;
106(41)
17407-17412
- 30
Michaux G, Abbitt K B, Collinson L M, Haberichter S L, Norman K E, Cutler D F.
The physiological function of von Willebrand’s factor depends on its tubular storage
in endothelial Weibel-Palade bodies.
Dev Cell.
2006;
10(2)
223-232
- 31
Schorer A E, Moldow C F, Rick M E.
Interleukin 1 or endotoxin increases the release of von Willebrand factor from human
endothelial cells.
Br J Haematol.
1987;
67(2)
193-197
- 32
Paleolog E M, Crossman D C, McVey J H, Pearson J D.
Differential regulation by cytokines of constitutive and stimulated secretion of von
Willebrand factor from endothelial cells.
Blood.
1990;
75(3)
688-695
- 33
Padilla A, Moake J L, Bernardo A et al..
P-selectin anchors newly released ultralarge von Willebrand factor multimers to the
endothelial cell surface.
Blood.
2004;
103(6)
2150-2156
- 34
Huang J, Roth R, Heuser J E, Sadler J E.
Integrin alpha(v)beta(3) on human endothelial cells binds von Willebrand factor strings
under fluid shear stress.
Blood.
2009;
113(7)
1589-1597
- 35
Chauhan A K, Goerge T, Schneider S W, Wagner D D.
Formation of platelet strings and microthrombi in the presence of ADAMTS-13 inhibitor
does not require P-selectin or beta3 integrin.
J Thromb Haemost.
2007;
5(3)
583-589
- 36
Dong J F, Moake J L, Nolasco L et al..
ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers
on the endothelial surface under flowing conditions.
Blood.
2002;
100(12)
4033-4039
- 37
Bernardo A, Ball C, Nolasco L, Choi H, Moake J L, Dong J F.
Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings
support leukocyte tethering and rolling under high shear stress.
J Thromb Haemost.
2005;
3(3)
562-570
- 38
Groot E, Fijnheer R, Sebastian S A, de Groot P G, Lenting P J.
The active conformation of von Willebrand factor in patients with thrombotic thrombocytopenic
purpura in remission.
J Thromb Haemost.
2009;
7(6)
962-969
- 39
Martin C, Morales L D, Cruz M A.
Purified A2 domain of von Willebrand factor binds to the active conformation of von
Willebrand factor and blocks the interaction with platelet glycoprotein Ibalpha.
J Thromb Haemost.
2007;
5(7)
1363-1370
- 40
Siedlecki C A, Lestini B J, Kottke-Marchant K K, Eppell S J, Wilson D L, Marchant R E.
Shear-dependent changes in the three-dimensional structure of human von Willebrand
factor.
Blood.
1996;
88(8)
2939-2950
- 41
Shankaran H, Alexandridis P, Neelamegham S.
Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association
of von Willebrand factor in suspension.
Blood.
2003;
101(7)
2637-2645
- 42
Schneider S W, Nuschele S, Wixforth A et al..
Shear-induced unfolding triggers adhesion of von Willebrand factor fibers.
Proc Natl Acad Sci U S A.
2007;
104(19)
7899-7903
- 43
Choi H, Aboulfatova K, Pownall H J, Cook R, Dong J F.
Shear-induced disulfide bond formation regulates adhesion activity of von Willebrand
factor.
J Biol Chem.
2007;
282(49)
35604-35611
- 44
Li Y, Choi H, Zhou Z et al..
Covalent regulation of ULVWF string formation and elongation on endothelial cells
under flow conditions.
J Thromb Haemost.
2008;
6(7)
1135-1143
- 45
Xie L, Chesterman C N, Hogg P J.
Reduction of von Willebrand factor by endothelial cells.
Thromb Haemost.
2000;
84(3)
506-513
- 46
Xie L, Chesterman C N, Hogg P J.
Control of von Willebrand factor multimer size by thrombospondin-1.
J Exp Med.
2001;
193(12)
1341-1349
- 47
Pimanda J E, Annis D S, Raftery M, Mosher D F, Chesterman C N, Hogg P J.
The von Willebrand factor-reducing activity of thrombospondin-1 is located in the
calcium-binding/C-terminal sequence and requires a free thiol at position 974.
Blood.
2002;
100(8)
2832-2838
- 48
Chen J, Fu X, Wang Y et al..
Oxidative modification of von Willebrand factor by neutrophil oxidants inhibits its
cleavage by ADAMTS13.
Blood.
2009;
, October 7 (Epub ahead of print)
- 49
Porter S, Clark I M, Kevorkian L, Edwards D R.
The ADAMTS metalloproteinases.
Biochem J.
2005;
386(Pt 1)
15-27
- 50
Anderson P J, Kokame K, Sadler J E.
Zinc and calcium ions cooperatively modulate ADAMTS13 activity.
J Biol Chem.
2006;
281(2)
850-857
- 51
Gardner M D, Chion C K, de Groot R, Shah A, Crawley J T, Lane D A.
A functional calcium-binding site in the metalloprotease domain of ADAMTS13.
Blood.
2009;
113(5)
1149-1157
- 52
Mannucci P M, Canciani M T, Forza I, Lussana F, Lattuada A, Rossi E.
Changes in health and disease of the metalloprotease that cleaves von Willebrand factor.
Blood.
2001;
98(9)
2730-2735
- 53
Tsai H M, Sarode R, Downes K A.
Ultralarge von Willebrand factor multimers and normal ADAMTS13 activity in the umbilical
cord blood.
Thromb Res.
2002;
108(2–3)
121-125
- 54
Uemura M, Tatsumi K, Matsumoto M et al..
Localization of ADAMTS13 to the stellate cells of human liver.
Blood.
2005;
106(3)
922-924
- 55
Zhou W, Inada M, Lee T P et al..
ADAMTS13 is expressed in hepatic stellate cells.
Lab Invest.
2005;
85(6)
780-788
- 56
Suzuki M, Murata M, Matsubara Y et al..
Detection of von Willebrand factor-cleaving protease (ADAMTS-13) in human platelets.
Biochem Biophys Res Commun.
2004;
313(1)
212-216
- 57
Liu L, Choi H, Bernardo A et al..
Platelet-derived VWF-cleaving metalloprotease ADAMTS-13.
J Thromb Haemost.
2005;
3(11)
2536-2544
- 58
Turner N, Nolasco L, Tao Z, Dong J F, Moake J.
Human endothelial cells synthesize and release ADAMTS-13.
J Thromb Haemost.
2006;
4(6)
1396-1404
- 59
Davis A K, Makar R S, Stowell C P, Kuter D J, Dzik W H.
ADAMTS13 binds to CD36: a potential mechanism for platelet and endothelial localization
of ADAMTS13.
Transfusion.
2009;
49(2)
206-213
- 60
Vomund A N, Majerus E M.
ADAMTS13 bound to endothelial cells exhibits enhanced cleavage of von Willebrand factor.
J Biol Chem.
2009;
284(45)
30925-30932
- 61
Turner N A, Nolasco L, Ruggeri Z M, Moake J L.
Endothelial cell ADAMTS-13 and VWF: production, release and VWF string cleavage.
Blood.
2009;
114(24)
5102-5111
- 62
Shang D, Zheng X W, Niiya M, Zheng X L.
Apical sorting of ADAMTS13 in vascular endothelial cells and Madin-Darby canine kidney
cells depends on the CUB domains and their association with lipid rafts.
Blood.
2006;
108(7)
2207-2215
- 63
Zhou Z, Jing H, Tao Z et al..
Effects of naturally occurring mutations in CUB-1 domain on synthesis, stability,
and activity of ADAMTS-13.
Thromb Res.
2009;
124(3)
323-327
- 64
Ricketts L M, Dlugosz M, Luther K B, Haltiwanger R S, Majerus E M.
O-fucosylation is required for ADAMTS13 secretion.
J Biol Chem.
2007;
282(23)
17014-17023
- 65
Zhou W, Tsai H M.
N-Glycans of ADAMTS13 modulate its secretion and von Willebrand factor cleaving activity.
Blood.
2009;
113(4)
929-935
- 66
Cao W J, Niiya M, Zheng X W, Shang D Z, Zheng X L.
Inflammatory cytokines inhibit ADAMTS13 synthesis in hepatic stellate cells and endothelial
cells.
J Thromb Haemost.
2008;
6(7)
1233-1235
- 67
Nguyen T C, Liu A, Liu L et al..
Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis.
Haemtologica.
2007;
92
121-124
- 68
Kremer Hovinga J A, Zeerleder S, Kessler P et al..
ADAMTS-13, von Willebrand factor and related parameters in severe sepsis and septic
shock.
J Thromb Haemost.
2007;
5(11)
2284-2290
- 69
Zheng X, Nishio K, Majerus E M, Sadler J E.
Cleavage of von Willebrand factor requires the spacer domain of the metalloprotease
ADAMTS13.
J Biol Chem.
2003;
278(32)
30136-30141
- 70
Majerus E M, Anderson P J, Sadler J E.
Binding of ADAMTS13 to von Willebrand factor.
J Biol Chem.
2005;
280(23)
21773-21778
- 71
Zhou W, Dong L, Ginsburg D, Bouhassira E E, Tsai H M.
Enzymatically active ADAMTS13 variants are not inhibited by anti-ADAMTS13 autoantibodies:
a novel therapeutic strategy?.
J Biol Chem.
2005;
280(48)
39934-39941
- 72
Feys H B, Anderson P J, Vanhoorelbeke K, Majerus E M, Sadler J E.
Multi-step binding of ADAMTS13 to VWF.
J Thromb Haemost.
2009;
7(12)
2088-2095
- 73
Soejima K, Matsumoto M, Kokame K et al..
ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand
factor cleavage.
Blood.
2003;
102(9)
3232-3237
- 74
Ai J, Smith P, Wang S, Zhang P, Zheng X L.
The proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity
and are all required for cleavage of von Willebrand factor.
J Biol Chem.
2005;
280(33)
29428-29434
- 75
Gao W, Anderson P J, Majerus E M, Tuley E A, Sadler J E.
Exosite interactions contribute to tension-induced cleavage of von Willebrand factor
by the antithrombotic ADAMTS13 metalloprotease.
Proc Natl Acad Sci U S A.
2006;
103(50)
19099-19104
- 76
de Groot R, Bardhan A, Ramroop N, Lane D A, Crawley J T.
Essential role of the disintegrin-like domain in ADAMTS13 function.
Blood.
2009;
113(22)
5609-5616
- 77
Zhang P, Pan W, Rux A H, Sachais B S, Zheng X L.
The cooperative activity between the carboxyl-terminal TSP1 repeats and the CUB domains
of ADAMTS13 is crucial for recognition of von Willebrand factor under flow.
Blood.
2007;
110(6)
1887-1894
- 78
Tao Z, Peng Y, Nolasco L et al..
Recombinant CUB-1 domain polypeptide inhibits the cleavage of ULVWF strings by ADAMTS13
under flow conditions.
Blood.
2005;
106(13)
4139-4145
- 79
Tao Z, Wang Y, Choi H et al..
Cleavage of ultralarge multimers of von Willebrand factor by C-terminal-truncated
mutants of ADAMTS-13 under flow.
Blood.
2005;
106(1)
141-143
- 80
Akiyama M, Takeda S, Kokame K, Takagi J, Miyata T.
Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous
exosites for von Willebrand factor.
Proc Natl Acad Sci U S A.
2009;
106(46)
19274-19279
- 81
Dong J F, Moake J L, Bernardo A et al..
ADAMTS-13 metalloprotease interacts with the endothelial cell-derived ultra-large
von Willebrand factor.
J Biol Chem.
2003;
278(32)
29633-29639
- 82
Kokame K, Matsumoto M, Fujimura Y, Miyata T.
VWF73, a region from D1596 to R1668 of von Willebrand factor, provides a minimal substrate
for ADAMTS-13.
Blood.
2004;
103(2)
607-612
- 83
Wu J J, Fujikawa K, McMullen B A, Chung D W.
Characterization of a core binding site for ADAMTS-13 in the A2 domain of von Willebrand
factor.
Proc Natl Acad Sci U S A.
2006;
103(49)
18470-18474
- 84
Zanardelli S, Crawley J T, Chion C K, Lam J K, Preston R J, Lane D A.
ADAMTS13 substrate recognition of von Willebrand factor A2 domain.
J Biol Chem.
2006;
281(3)
1555-1563
- 85
Jenkins P V, Pasi K J, Perkins S J.
Molecular modeling of ligand and mutation sites of the type A domains of human von
Willebrand factor and their relevance to von Willebrand’s disease.
Blood.
1998;
91(6)
2032-2044
- 86
Tsai H M, Sussman I I, Nagel R L.
Shear stress enhances the proteolysis of von Willebrand factor in normal plasma.
Blood.
1994;
83(8)
2171-2179
- 87
Tsai H M.
Shear stress and von Willebrand factor in health and disease.
Semin Thromb Hemost.
2003;
29(5)
479-488
- 88
Baldauf C, Schneppenheim R, Stacklies W, et al..
Shear-induced unfolding activates von Willebrand factor A2 domain for proteolysis.
J Thromb Haemost.
2009;
7(12)
2096-2105
- 89
Zhang X, Halvorsen K, Zhang C Z, Wong W P, Springer T A.
Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor.
Science.
2009;
324(5932)
1330-1334
- 90
Wu T, Lin J, Cruz M A, Dong J F, Zhu C.
Force-induced cleavage of single VWF A1A2A3-tridomains by ADAMTS-13.
Blood.
2010;
115(2)
370-378
- 91
Nishio K, Anderson P J, Zheng X L, Sadler J E.
Binding of platelet glycoprotein Ibalpha to von Willebrand factor domain A1 stimulates
the cleavage of the adjacent domain A2 by ADAMTS13.
Proc Natl Acad Sci U S A.
2004;
101(29)
10578-10583
- 92
Shim K, Anderson P J, Tuley E A, Wiswall E, Sadler J E.
Platelet-VWF complexes are preferred substrates of ADAMTS13 under fluid shear stress.
Blood.
2008;
111(2)
651-657
- 93
Cao W, Krishnaswamy S, Camire R M, Lenting P J, Zheng X L.
Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS13.
Proc Natl Acad Sci U S A.
2008;
105(21)
7416-7421
- 94
Zanardelli S, Chion A C, Groot E et al..
A novel binding site for ADAMTS13 constitutively exposed on the surface of globular
VWF.
Blood.
2009;
114(13)
2819-2828
- 95
Franchini M, Montagnana M, Targher G, Lippi G.
Reduced von Willebrand factor-cleaving protease levels in secondary thrombotic microangiopathies
and other diseases.
Semin Thromb Hemost.
2007;
33(8)
787-797
- 96
Furlan M, Robles R, Solenthaler M, Wassmer M, Sandoz P, Lämmle B.
Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing
thrombotic thrombocytopenic purpura.
Blood.
1997;
89(9)
3097-3103
- 97
Furlan M, Robles R, Galbusera M et al..
von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and
the hemolytic-uremic syndrome.
N Engl J Med.
1998;
339(22)
1578-1584
- 98
Furlan M, Robles R, Morselli B, Sandoz P, Lämmle B.
Recovery and half-life of von Willebrand factor-cleaving protease after plasma therapy
in patients with thrombotic thrombocytopenic purpura.
Thromb Haemost.
1999;
81(1)
8-13
- 99
Kokame K, Matsumoto M, Soejima K et al..
Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand
factor-cleaving protease activity.
Proc Natl Acad Sci U S A.
2002;
99(18)
11902-11907
- 100
Antoine G, Zimmermann K, Plaimauer B et al..
ADAMTS13 gene defects in two brothers with constitutional thrombotic thrombocytopenic
purpura and normalization of von Willebrand factor-cleaving protease activity by recombinant
human ADAMTS13.
Br J Haematol.
2003;
120(5)
821-824
- 101
Assink K, Schiphorst R, Allford S et al..
Mutation analysis and clinical implications of von Willebrand factor-cleaving protease
deficiency.
Kidney Int.
2003;
63(6)
1995-1999
- 102
Savasan S, Lee S K, Ginsburg D, Tsai H M.
ADAMTS13 gene mutation in congenital thrombotic thrombocytopenic purpura with previously
reported normal VWF cleaving protease activity.
Blood.
2003;
101(11)
4449-4451
- 103
Schneppenheim R, Budde U, Oyen F et al..
von Willebrand factor cleaving protease and ADAMTS13 mutations in childhood TTP.
Blood.
2003;
101(5)
1845-1850
- 104
Matsumoto M, Kokame K, Soejima K et al..
Molecular characterization of ADAMTS13 gene mutations in Japanese patients with Upshaw-Schulman
syndrome.
Blood.
2004;
103(4)
1305-1310
- 105
Licht C, Stapenhorst L, Simon T, Budde U, Schneppenheim R, Hoppe B.
Two novel ADAMTS13 gene mutations in thrombotic thrombocytopenic purpura/hemolytic-uremic
syndrome (TTP/HUS).
Kidney Int.
2004;
66(3)
955-958
- 106
Uchida T, Wada H, Mizutani M Research Project on Genetics of Thrombosis et al.
Identification of novel mutations in ADAMTS13 in an adult patient with congenital
thrombotic thrombocytopenic purpura.
Blood.
2004;
104(7)
2081-2083
- 107
Pimanda J E, Maekawa A, Wind T, Paxton J, Chesterman C N, Hogg P J.
Congenital thrombotic thrombocytopenic purpura in association with a mutation in the
second CUB domain of ADAMTS13.
Blood.
2004;
103(2)
627-629
- 108
Furlan M, Lämmle B.
Aetiology and pathogenesis of thrombotic thrombocytopenic purpura and haemolytic uraemic
syndrome: the role of von Willebrand factor-cleaving protease.
Best Pract Res Clin Haematol.
2001;
14(2)
437-454
- 109
Tao Z, Anthony K, Peng Y et al..
Novel ADAMTS-13 mutations in an adult with delayed onset thrombotic thrombocytopenic
purpura.
J Thromb Haemost.
2006;
4(9)
1931-1935
- 110
Motto D G, Chauhan A K, Zhu G et al..
Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible
ADAMTS13-deficient mice.
J Clin Invest.
2005;
115(10)
2752-2761
- 111
Karmali M A, Steele B T, Petric M, Lim C.
Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and
cytotoxin-producing Escherichia coli in stools.
Lancet.
1983;
1(8325)
619-620
- 112
Nolasco L H, Turner N A, Bernardo A et al..
Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion
and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers.
Blood.
2005;
106(13)
4199-4209
- 113
Chauhan A K, Walsh M T, Zhu G, Ginsburg D, Wagner D D, Motto D G.
The combined roles of ADAMTS13 and VWF in murine models of TTP, endotoxemia, and thrombosis.
Blood.
2008;
111(7)
3452-3457
- 114
Studt J D, Hovinga J A, Antoine G et al..
Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS13 inhibitor:
in vitro inhibition of ADAMTS13 activity by hemoglobin.
Blood.
2005;
105(2)
542-544
- 115
Donadelli R, Banterla F, Galbusera M International Registry of Recurrent and Familial
HUS/TTP et al.
In-vitro and in-vivo consequences of mutations in the von Willebrand factor cleaving
protease ADAMTS13 in thrombotic thrombocytopenic purpura.
Thromb Haemost.
2006;
96(4)
454-464
- 116
Kokame K, Miyata T.
Genetic defects leading to hereditary thrombotic thrombocytopenic purpura.
Semin Hematol.
2004;
41(1)
34-40
- 117
Plaimauer B, Fuhrmann J, Mohr G et al..
Modulation of ADAMTS13 secretion and specific activity by a combination of common
amino acid polymorphisms and a missense mutation.
Blood.
2006;
107(1)
118-125
- 118
Bongers T N, De Maat M P, Dippel D W, Uitterlinden A G, Leebeek F W.
Absence of Pro475Ser polymorphism in ADAMTS-13 in Caucasians.
J Thromb Haemost.
2005;
3(4)
805
- 119
Ruan C, Dai L, Su J, Wang Z, Ruan C.
The frequency of P475S polymorphism in von Willebrand factor-cleaving protease in
the Chinese population and its relevance to arterial thrombotic disorders.
Thromb Haemost.
2004;
91(6)
1257-1258
- 120
Terrell D R, Williams L A, Vesely S K, Lämmle B, Hovinga J A, George J N.
The incidence of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: all
patients, idiopathic patients, and patients with severe ADAMTS-13 deficiency.
J Thromb Haemost.
2005;
3(7)
1432-1436
- 121
Egerman R S, Witlin A G, Friedman S A, Sibai B M.
Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome in pregnancy: review
of 11 cases.
Am J Obstet Gynecol.
1996;
175(4 Pt 1)
950-956
- 122
McCrae K R, Cines D B.
Thrombotic microangiopathy during pregnancy.
Semin Hematol.
1997;
34(2)
148-158
- 123
Gerth J, Schleussner E, Kentouche K, Busch M, Seifert M, Wolf G.
Pregnancy-associated thrombotic thrombocytopenic purpura.
Thromb Haemost.
2009;
101(2)
248-251
- 124
Rieger M, Mannucci P M, Kremer Hovinga J A et al..
ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated
diseases.
Blood.
2005;
106(4)
1262-1267
- 125
Austin S K, Starke R D, Lawrie A S, Cohen H, Machin S J, Mackie I J.
The VWF/ADAMTS13 axis in the antiphospholipid syndrome: ADAMTS13 antibodies and ADAMTS13
dysfunction.
Br J Haematol.
2008;
141(4)
536-544
- 126
Matsuyama T, Kuwana M, Matsumoto M, Isonishi A, Inokuma S, Fujimura Y.
Heterogeneous pathogenic processes of thrombotic microangiopathies in patients with
connective tissue diseases.
Thromb Haemost.
2009;
102(2)
371-378
- 127
Shimizu M, Nomura S, Ishii K et al..
The significance of ADAMTS13 in a patient with thrombotic thrombocytopenic purpura
complicated autoimmune hepatitis.
Thromb Haemost.
2009;
101(3)
599-600
- 128
Kiki I, Gundogdu M, Albayrak B, Bilgiç Y.
Thrombotic thrombocytopenic purpura associated with Brucella infection.
Am J Med Sci.
2008;
335(3)
230-232
- 129
Rossi F C, Angerami R N, de Paula E V et al..
A novel association of acquired ADAMTS13 inhibitor and acute dengue virus infection.
Transfusion.
2009;
, September 24 (Epub ahead of print)
- 130
Yagita M, Uemura M, Nakamura T, Kunitomi A, Matsumoto M, Fujimura Y.
Development of ADAMTS13 inhibitor in a patient with hepatitis C virus-related liver
cirrhosis causes thrombotic thrombocytopenic purpura.
J Hepatol.
2005;
42(3)
420-421
- 131
Uemura M, Fujimura Y, Matsumoto M et al..
Comprehensive analysis of ADAMTS13 in patients with liver cirrhosis.
Thromb Haemost.
2008;
99(6)
1019-1029
- 132
Bennett C L, Connors J M, Carwile J M et al..
Thrombotic thrombocytopenic purpura associated with clopidogrel.
N Engl J Med.
2000;
342(24)
1773-1777
- 133
Bennett C L, Kim B, Zakarija A SERF-TTP Research Group et al.
Two mechanistic pathways for thienopyridine-associated thrombotic thrombocytopenic
purpura: a report from the SERF-TTP Research Group and the RADAR Project.
J Am Coll Cardiol.
2007;
50(12)
1138-1143
- 134
Zakarija A, Kwaan H C, Moake J L et al..
Ticlopidine- and clopidogrel-associated thrombotic thrombocytopenic purpura (TTP):
review of clinical, laboratory, epidemiological, and pharmacovigilance findings (1989–2008).
Kidney Int Suppl.
2009;
112
S20-S24
- 135
Vesely S K, George J N, Lämmle B et al..
ADAMTS13 activity in thrombotic thrombocytopenic purpura-hemolytic uremic syndrome:
relation to presenting features and clinical outcomes in a prospective cohort of 142
patients.
Blood.
2003;
102(1)
60-68
- 136
Shelat S G, Smith P, Ai J, Zheng X L.
Inhibitory autoantibodies against ADAMTS-13 in patients with thrombotic thrombocytopenic
purpura bind ADAMTS-13 protease and may accelerate its clearance in vivo.
J Thromb Haemost.
2006;
4(8)
1707-1717
- 137
Shelat S G, Ai J, Zheng X L.
Molecular biology of ADAMTS13 and diagnostic utility of ADAMTS13 proteolytic activity
and inhibitor assays.
Semin Thromb Hemost.
2005;
31(6)
659-672
- 138
Ferrari S, Mudde G C, Rieger M, Veyradier A, Kremer Hovinga J A, Scheiflinger F.
IgG subclass distribution of anti-ADAMTS13 antibodies in patients with acquired thrombotic
thrombocytopenic purpura.
J Thromb Haemost.
2009;
7(10)
1703-1710
- 139
Klaus C, Plaimauer B, Studt J D et al..
Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic
purpura.
Blood.
2004;
103(12)
4514-4519
- 140
Luken B M, Kaijen P H, Turenhout E A et al..
Multiple B-cell clones producing antibodies directed to the spacer and disintegrin/thrombospondin
type-1 repeat 1 (TSP1) of ADAMTS13 in a patient with acquired thrombotic thrombocytopenic
purpura.
J Thromb Haemost.
2006;
4(11)
2355-2364
- 141
Luken B M, Turenhout E A, Kaijen P H et al..
Amino acid regions 572-579 and 657-666 of the spacer domain of ADAMTS13 provide a
common antigenic core required for binding of antibodies in patients with acquired
TTP.
Thromb Haemost.
2006;
96(3)
295-301
- 142
Moake J L, Byrnes J J.
Thrombotic microangiopathies associated with drugs and bone marrow transplantation.
Hematol Oncol Clin North Am.
1996;
10(2)
485-497
- 143
Elliott M A, Nichols Jr W L, Plumhoff E A et al..
Posttransplantation thrombotic thrombocytopenic purpura: a single-center experience
and a contemporary review.
Mayo Clin Proc.
2003;
78(4)
421-430
- 144
Oleksowicz L, Bhagwati N, DeLeon-Fernandez M.
Deficient activity of von Willebrand’s factor-cleaving protease in patients with disseminated
malignancies.
Cancer Res.
1999;
59(9)
2244-2250
- 145
Mannucci P M, Karimi M, Mosalaei A, Canciani M T, Peyvandi F.
Patients with localized and disseminated tumors have reduced but measurable levels
of ADAMTS-13 (von Willebrand factor cleaving protease).
Haematologica.
2003;
88(4)
454-458
- 146
Medina P J, Sipols J M, George J N.
Drug-associated thrombotic thrombocytopenic purpura-hemolytic uremic syndrome.
Curr Opin Hematol.
2001;
8(5)
286-293
- 147
Sugimoto T, Saigo K, Shin T et al..
Von Willebrand factor-cleaving protease activity remains at the intermediate level
in thrombotic thrombocytopenic purpura.
Acta Haematol.
2005;
113(3)
198-203
- 148
Zakarija A, Bennett C.
Drug-induced thrombotic microangiopathy.
Semin Thromb Hemost.
2005;
31(6)
681-690
- 149
Bernardo A, Ball C, Nolasco L, Moake J F, Dong J F.
Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived
ultralarge von Willebrand factor multimers under flow.
Blood.
2004;
104(1)
100-106
- 150
Crawley J T, Lane D A, Woodward M, Rumley A, Lowe G D.
Evidence that high von Willebrand factor and low ADAMTS-13 levels independently increase
the risk of a non-fatal heart attack.
J Thromb Haemost.
2008;
6(4)
583-588
- 151
Fuchigami S, Kaikita K, Soejima K et al..
Changes in plasma von Willebrand factor-cleaving protease (ADAMTS13) levels in patients
with unstable angina.
Thromb Res.
2008;
122(5)
618-623
- 152
Bongers T N, de Bruijne E L, Dippel D W et al..
Lower levels of ADAMTS13 are associated with cardiovascular disease in young patients.
Atherosclerosis.
2009;
207(1)
250-254
- 153
Gombos T, Makó V, Cervenak L et al..
Levels of von Willebrand factor antigen and von Willebrand factor cleaving protease
(ADAMTS13) activity predict clinical events in chronic heart failure.
Thromb Haemost.
2009;
102(3)
573-580
- 154
Bongers T N, de Maat M P, van Goor M L et al..
High von Willebrand factor levels increase the risk of first ischemic stroke: influence
of ADAMTS13, inflammation, and genetic variability.
Stroke.
2006;
37(11)
2672-2677
- 155
Vergouwen M D, Bakhtiari K, van Geloven N, Vermeulen M, Roos Y B, Meijers J C.
Reduced ADAMTS13 activity in delayed cerebral ischemia after aneurysmal subarachnoid
hemorrhage.
J Cereb Blood Flow Metab.
2009;
29(10)
1734-1741
- 156
Matsuyama T, Uemura M, Ishikawa M et al..
Increased von Willebrand factor over decreased ADAMTS13 activity may contribute to
the development of liver disturbance and multiorgan failure in patients with alcoholic
hepatitis.
Alcohol Clin Exp Res.
2007;
31(1, suppl)
S27-S35
- 157
Uemura M, Fujimura Y, Matsuyama T et al..
Potential role of ADAMTS13 in the progression of alcoholic hepatitis.
Curr Drug Abuse Rev.
2008;
1(2)
188-196
- 158
Morioka C, Uemura M, Matsuyama T et al..
Plasma ADAMTS13 activity parallels the APACHE II score, reflecting an early prognostic
indicator for patients with severe acute pancreatitis.
Scand J Gastroenterol.
2008;
43(11)
1387-1396
- 159
de Mast Q, Groot E, Lenting P J et al..
Thrombocytopenia and release of activated von Willebrand Factor during early Plasmodium falciparum malaria.
J Infect Dis.
2007;
196(4)
622-628
- 160
de Mast Q, Groot E, Asih P B de MQ et al.
ADAMTS13 deficiency with elevated levels of ultra-large and active von Willebrand
factor in P. falciparum and P. vivax malaria.
Am J Trop Med Hyg.
2009;
80(3)
492-498
- 161
Larkin D, de Laat B, Jenkins P V et al..
Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13
inhibition.
PLoS Pathog.
2009;
5(3)
e1000349
- 162
Nguyen T C, Han Y Y, Kiss J E et al..
Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin
motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated
multiple organ failure.
Crit Care Med.
2008;
36(10)
2878-2887
- 163
Zhou Z, Han H, Cruz M A, López J A, Dong J F, Guchhait P.
Haemoglobin blocks von Willebrand factor proteolysis by ADAMTS-13: a mechanism associated
with sickle cell disease.
Thromb Haemost.
2009;
101(6)
1070-1077
- 164
Chauhan A K, Motto D G, Lamb C B et al..
Systemic antithrombotic effects of ADAMTS13.
J Exp Med.
2006;
203(3)
767-776
- 165
Zhao B Q, Chauhan A K, Canault M et al..
von Willebrand factor-cleaving protease ADAMTS13 reduces ischemic brain injury in
experimental stroke.
Blood.
2009;
114(15)
3329-3334
Zhou ZhouM.D. Ph.D.
Thrombosis Division, Section of Cardiovascular Research, Department of Medicine
Baylor College of Medicine, Houston, TX
Email: zz144319@bcm.tmc.edu