Horm Metab Res 2010; 42(5): 334-339
DOI: 10.1055/s-0030-1248250
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Neurohumoral and Metabolic Response to Exercise in Water

S. Wiesner1 , A. L. Birkenfeld2 , S. Engeli3 , S. Haufe1 , L. Brechtel4 , J. Wein4 , M. Hermsdorf1 , B. Karnahl5 , M. Berlan6 , M. Lafontan6 , F. C. G. J. Sweep7 , F. C. Luft1 , J. Jordan3
  • 1Franz-Volhard Clinical Research Center, Medical Faculty of the Charité and HELIOS Klinikum, Berlin, Germany
  • 2Department of Internal Medicine, Yale University School of Medicine New Haven, CT, USA
  • 3Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
  • 4Institute of Sport Sciences and Sport Medicine, Humboldt-University, Berlin, Germany
  • 5Institute of Sport Sciences, University of Potsdam, Potsdam, Germany
  • 6Inserm Unit 858, Institut de Médecine Moléculaire de Rangueil, and Université Paul Sabatier, Toulouse, France
  • 7Department of Chemical Endocrinology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
Further Information

Publication History

received 07.07.2009

accepted 18.01.2010

Publication Date:
22 February 2010 (online)

Abstract

Atrial natriuretic peptide (ANP) stimulates lipid mobilization and lipid oxidation in humans. The mechanism appears to promote lipid mobilization during exercise. We tested the hypothesis that water immersion augments exercise-induced ANP release and that the change in ANP availability is associated with increased lipid mobilization and lipid oxidation. In an open randomized and cross-over fashion we studied 17 men (age 31±3.6 years; body mass index 24±1.7 kg/m2; body fat 17±6.7%) on no medication. Subjects underwent two incremental exercise tests on a bicycle ergometer. One test was conducted on land and the other test during immersion in water up to the xiphoid process. In a subset (n=7), we obtained electromyography recordings in the left leg. We monitored gas exchange, blood pressure, and heart rate. In addition, we obtained blood samples towards the end of each exercise step to determine ANP, norepinephrine, epinephrine, lactate, free fatty acids, insulin, and glucose concentrations. Heart rate, systolic blood pressure, and oxygen consumption at the anaerobic threshold and during peak exercise were similar on land and with exercise in water. The respiratory quotient was mildly reduced when subjects exercised in water. Glucose and lactate measurements were decreased whereas free fatty acid concentrations were increased with exercise in water. Water immersion attenuated epinephrine and norepinephrine and augmented ANP release during exercise. Even though water immersion blunts exercise-induced sympathoadrenal activation, lipid mobilization and lipid oxidation rate are maintained or even improved. The response may be explained by augmented ANP release.

References

  • 1 Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes.  Diabetes. 2005;  54 8-14
  • 2 Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes.  Nat Genet. 2003;  34 267-273
  • 3 Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.  N Engl J Med. 2004;  350 664-671
  • 4 Sengenes C, Berlan M, De GI, Lafontan M, Galitzky J. Natriuretic peptides: a new lipolytic pathway in human adipocytes.  FASEB J. 2000;  14 1345-1351
  • 5 Galitzky J, Sengenes C, Thalamas C, Marques MA, Senard JM, Lafontan M, Berlan M. The lipid-mobilizing effect of atrial natriuretic peptide is unrelated to sympathetic nervous system activation or obesity in young men.  J Lipid Res. 2001;  42 536-544
  • 6 Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J. Lipid Mobilization with Physiological Atrial Natriuretic Peptide Concentrations in Humans.  J Clin Endocrinol Metab. 2005;  90 3622-3628
  • 7 Birkenfeld AL, Budziarek P, Boschmann M, Moro C, Adams F, Franke G, Berlan M, Marques MA, Sweep FC, Luft FC, Lafontan M, Jordan J. Atrial natriuretic peptide induces postprandial lipid oxidation in humans.  Diabetes. 2008;  57 3199-3204
  • 8 Birkenfeld AL, Boschmann M, Moro C, Adams F, Heusser K, Tank J, Diedrich A, Schroeder C, Franke G, Berlan M, Luft FC, Lafontan M, Jordan J. \{beta\}-Adrenergic and Atrial Natriuretic Peptide Interactions on Human Cardiovascular and Metabolic Regulation.  J Clin Endocrinol Metab. 2006;  91 5069-5075
  • 9 Sengenes C, Bouloumie A, Hauner H, Berlan M, Busse R, Lafontan M, Galitzky J. Involvement of a cGMP-dependent pathway in the natriuretic peptide-mediated hormone-sensitive lipase phosphorylation in human adipocytes.  J Biol Chem. 2003;  278 48617-48626
  • 10 Moro C, Crampes F, Sengenes C, De G I, Galitzky J, Thalamas C, Lafontan M, Berlan M. Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans.  FASEB J. 2004;  18 908-910
  • 11 Moro C, Polak J, Hejnova J, Klimcakova E, Crampes F, Stich V, Lafontan M, Berlan M. Atrial natriuretic peptide stimulates lipid mobilization during repeated bouts of endurance exercise.  Am J Physiol Endocrinol Metab. 2006;  290 E864-E869
  • 12 Anderson JV, Millar ND, O'Hare JP, Mackenzie JC, Corrall RJ, Bloom SR. Atrial natriuretic peptide: physiological release associated with natriuresis during water immersion in man.  Clin Sci (Lond). 1986;  71 319-322
  • 13 Bradley DC, Kaslow HR. Radiometric assays for glycerol, glucose, and glycogen.  Anal Biochem. 1989;  180 11-16
  • 14 Willemsen JJ, Ross HA, Jacobs MC, Lenders JW, Thien T, Swinkels LM, Benraad TJ. Highly sensitive and specific HPLC with fluorometric detection for determination of plasma epinephrine and norepinephrine applied to kinetic studies in humans.  Clin Chem. 1995;  41 1455-1460
  • 15 Svedenhag J, Seger J. Running on land and in water: comparative exercise physiology.  Med Sci Sports Exerc. 1992;  24 1155-1160
  • 16 Gabrielsen A, Warberg J, Christensen NJ, Bie P, Stadeager C, Pump B, Norsk P. Arterial pulse pressure and vasopressin release during graded water immersion in humans.  Am J Physiol Regul Integr Comp Physiol. 2000;  278 R1583-R1588
  • 17 Gabrielsen A, Videbaek R, Johansen LB, Warberg J, Christensen NJ, Pump B, Norsk P. Forearm vascular and neuroendocrine responses to graded water immersion in humans.  Acta Physiol Scand. 2000;  169 87-94
  • 18 Ogihara T, Shima J, Hara H, Tabuchi Y, Hashizume K, Nagano M, Katahira K, Kangawa K, Matsuo H, Kumahara Y. Significant increase in plasma immunoreactive atrial natriuretic polypeptide concentration during head-out water immersion.  Life Sci. 1986;  38 2413-2418
  • 19 Epstein M, Norsk P, Loutzenhiser R. Effects of water immersion on atrial natriuretic peptide release in humans.  Am J Nephrol. 1989;  9 1-24
  • 20 Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery?.  Sports Med. 2006;  36 747-765

Correspondence

J. JordanMD 

Institute of Clinical Pharmacology

Hannover Medical School

Carl-Neuberg-Straße 1

30625 Hannover

Germany

Phone: +49/511/532 2821

Fax: +49/511/532 2750

Email: jordan.jens@mh-hannover.de

    >