Subscribe to RSS
DOI: 10.1055/s-0029-1245739
© Georg Thieme Verlag KG Stuttgart · New York
The Influence of Collagen Network Integrity on the Accumulation of Gadolinium-Based MR Contrast Agents in Articular Cartilage
Der Einfluss der Integrität des Kollagenfasergerüsts auf die Akkumulation gadoliniumhaltiger MR-Kontrastmittel im GelenkknorpelPublication History
received: 8.7.2010
accepted: 8.9.2010
Publication Date:
05 November 2010 (online)

Zusammenfassung
Ziel: Die Gadolinium-verstärkte MR-Bildgebung des Gelenkknorpels wird zur Quantifizierung des Proteoglykanverlusts bei initialer Arthrose eingesetzt. Dabei wird angenommen, dass T 1 nach Gd-DTPA-Gabe im gleichgewichtsnahen Zustand selektiv mit dem Proteoglykanverlust des Knorpels korreliert. Um den Einfluss der Integrität des Kollagenfasergerüsts auf die Kontrastmittelakkumulation zu untersuchen, wurden die Relaxationsraten ΔR1 und ΔR2 nach Gd-DTPA-Gabe in einem gängigen Arthrosemodell verglichen. Material und Methoden: Der Abbau von Kollagen oder Proteoglykanen wurde dabei durch die proteolytischen Enzyme Kollagenase und Papain am gesunden bovinen Patellarknorpel induziert. Unter Verwendung einer speziellen MR-Sequenz wurden gleichzeitig T 1- und T 2-Parameterbilder vor und 11 h nach Gd-DTPA-Gabe akquiriert. Tiefenprofile von ΔR1 und ΔR2 im gesunden, proteoglykanreduzierten und kollagenreduzierten Gelenkknorpel wurden berechnet und Mittelwerte aus unterschiedlichen Knorpelschichten mit dem Mann-Whitney-U-Test verglichen. Ergebnisse: In oberflächlichen Schichten (1 mm) konnte weder für ΔR1 noch für ΔR2 ein signifikanter Unterschied (p > 0,05) zwischen proteoglykanreduziertem (16,6 ± 1,2 s–1, 15,9 ± 1,0 s–1) und kollagenreduziertem Gelenkknorpel (15,3 ± 0,9 s–1, 15,5 ± 0,9 s–1) festgestellt werden. In tiefen Schichten (3 mm) waren beide Parameter im proteoglykanreduzierten Gelenkknorpel (12.3 ± 1.1 s–1, 9,8 ± 0,8 s–1) signifikant höher (p = 0,005, 0,03) als im kollagenreduzierten Gelenkknorpel (9,1 ± 1,1 s–1, 8,7 ± 0,7 s–1). Schlussfolgerung: Sowohl ein Proteoglykanverlust als auch Veränderungen im Kollagenfasergerüst beeinflussen die Akkumulation von Gd-DTPA im Gelenkknorpel mit signifikanten Unterschieden zwischen oberflächlichen und tiefen Knorpelschichten.
Abstract
Purpose: Delayed gadolinium-enhanced MR imaging of cartilage is used to quantify the proteoglycan loss in early osteoarthritis. It is assumed that T 1 after Gd-DTPA administration in the near equilibrium state reflects selective proteoglycan loss from cartilage. To investigate the influence of the collagen network integrity on contrast accumulation, the relaxation rates ΔR1 and ΔR2 were compared after Gd-DTPA administration in a well established model of osteoarthritis. Materials and Methods: Collagen or proteoglycan depletion was induced by the proteolytic enzymes papain and collagenase in healthy bovine patellar cartilage. Using a dedicated MRI sequence, T 1 and T 2 maps were simultaneously acquired before and 11 h after Gd-DTPA administration. Depth-dependent profiles of ΔR1 and ΔR2 were calculated in healthy, proteoglycan and collagen-depleted articular cartilage and the mean values of different cartilage layers were compared using the Mann-Whitney-U test. Results: In superficial layers (1 mm) there was no significant difference (p > 0.05) in either ΔR1 or ΔR2 between proteoglycan-depleted (16.6 ± 1.2 s–1, 15.9 ± 1.0 s–1) and collagen-depleted articular cartilage (15.3 ± 0.9 s–1, 15.5 ± 0.9 s–1). In deep layers (3 mm) both parameters were significantly higher (p = 0.005, 0.03) in proteoglycan-depleted articular cartilage (12.3 ± 1.1 s–1, 9.8 ± 0.8 s–1) than in collagen-depleted articular cartilage (9.1 ± 1.1 s–1, 8.7 ± 0.7 s–1). Conclusion: Both proteoglycan loss and alterations in the collagen network influence the accumulation of Gd-DTPA in articular cartilage with significant differences between superficial and deep cartilage layers.
Key words
cartilage - MR imaging - gadolinium
References
- 1
Calvo E, Palacios I, Delgado E et al.
High-resolution MRI detects cartilage swelling at the early stages of experimental
osteoarthritis.
Osteoarthritis Cartilage.
2001;
9
463-472
MissingFormLabel
- 2
Goldring M B.
The role of the chondrocyte in osteoarthritis.
Arthritis Rheum.
2000;
43
1916-1926
MissingFormLabel
- 3
Waldschmidt J G, Rilling R J, Kajdacsy-Balla A A et al.
In vitro and in vivo MR imaging of hyaline cartilage: zonal anatomy, imaging pitfalls,
and pathologic conditions.
Radiographics.
1997;
17
1387-1402
MissingFormLabel
- 4
Goodwin D W, Wadghiri Y Z, Zhu H et al.
Macroscopic structure of articular cartilage of the tibial plateau: influence of a
characteristic matrix architecture on MRI appearance.
Am J Roentgenol.
2004;
182
311-318
MissingFormLabel
- 5
Smith H E, Mosher T J, Dardzinski B J et al.
Spatioal Variation in Cartilage T 2 of the Knee.
J Magn Reson Imaging.
2001;
14
50-55
MissingFormLabel
- 6
Xia Y, Moody J B, Burton-Wurster N et al.
Quantitative in situ correlation between microscopic MRI and polarized light microscopy
studies of articular cartilage.
Osteoarthritis Cartilage.
2001;
9
393-406
MissingFormLabel
- 7
Glaser C, Horng A, Mendlik T et al.
T2 relaxation time in patellar cartilage – global and regional reproducibility at
1.5 tesla and 3 tesla.
Fortschr Röntgenstr.
2007;
179
146-152
MissingFormLabel
- 8
Garnov N, Thörmer G, Gründer W et al.
In vivo MRT-Beurteilung der Kollagenstruktur des humanen Kniegelenkknorpels bei 7
T.
Fortschr Röntgenstr.
2010;
182
DOI: 10.1055/s-00300-1252842
MissingFormLabel
- 9
Horng A, Pagenstert I, Pitschmann M et al.
T2-Zeit in matrix-gestützter autologer Chondrozytentransplantation korreliert mit
dem IKDC über 2 Jahre.
Fortschr Röntgenstr.
2010;
182
DOI: 10.1055/s-0030-1252844
MissingFormLabel
- 10
Weiß J.
Kniegelenks-Osteoarthritits – Lässt sich ein schneller Knorpelverlust vorhersagen?.
Fortschr Röntgenstr.
2010;
182
106
MissingFormLabel
- 11
Bashir A, Gray M L, Boutin R D et al.
Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced
MR imaging.
Radiology.
1997;
205
551-558
MissingFormLabel
- 12
Boesen M, Jensen K E, Qvistgaard E et al.
Delayed gadolinium-enhanced magnetic resonance imaging (dGEMRIC) of hip joint cartilage:
better cartilage delineation after intra-articular than intravenous gadolinium injection.
Acta Radiol.
2006;
47
391-396
MissingFormLabel
- 13
Fischer W, Bohndorf K, Kreitner K F et al.
Indications for CT and MR arthrography – recommendations of the Musculoskeletal Workgroup
of the DRG.
Fortschr Röntgenstr.
2009;
181
441-446
MissingFormLabel
- 14
Wiener E, Hodler J, Pfirrmann C W.
Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of cadaveric shoulders: comparison
of contrast dynamics in hyaline and fibrous cartilage after intraarticular gadolinium
injection.
Acta Radiol.
2009;
50
86-92
MissingFormLabel
- 15
Kallioniemi A S, Jurvelin J S, Nieminen M T et al.
Contrast agent enhanced pQCT of articular cartilage.
Phys Med Biol.
2007;
52
1209-1219
MissingFormLabel
- 16
Wiener E, Woertler K, Weirich G et al.
Contrast enhanced cartilage imaging: Comparison of ionic and non-ionic contrast agents.
Eur J Radiol.
2007;
63
110-119
MissingFormLabel
- 17
Silvast T S, Kokkonen H T, Jurvelin J S et al.
Diffusion and near-equilibrium distribution of MRI and CT contrast agents in articular
cartilage.
Phys Med Biol.
2009;
54
6823-6836
MissingFormLabel
- 18
Krishnan N, Shetty S K, Williams A et al.
Delayed gadolinium-enhanced magnetic resonance imaging of the meniscus: an index of
meniscal tissue degeneration?.
Arthritis Rheum.
2007;
56
1507-1511
MissingFormLabel
- 19
McNicol D, Roughley P J.
Extraction and characterization of proteoglycan from human meniscus.
Biochem J.
1980;
185
705-713
MissingFormLabel
- 20
Laurent D, Wasvary J, Rudin M et al.
In vivo assessment of macromolecular content in articular cartilage of the goat knee.
Magn Reson Med.
2003;
49
1037-1046
MissingFormLabel
- 21
Rieppo J, Toyras J, Nieminen M T et al.
Structure-function relationships in enzymatically modified articular cartilage.
Cells Tissues Organs.
2003;
175
121-132
MissingFormLabel
- 22
In den Kleef J JE, Cuppen J JM.
RLSQ: T 1, T 2 and Rho Calculations, Combining Ratios and Least Squares.
Magn Reson Med.
1987;
5
513-524
MissingFormLabel
- 23
Wiener E, Pfirrmann C W, Hodler J.
Spatial variation in T 1 of healthy human articular cartilage of the knee joint.
Br J Radiol.
2010;
83
476-485
MissingFormLabel
- 24
Curtiss P H, Klein Jr L.
Destruction of articular cartilage in septic arthritis. I. In vitro studies.
J Bone Joint Surg Am.
1963;
45
797-806
MissingFormLabel
- 25
Paul P K, O’Byrne E, Blancuzzi V et al.
Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit
knee.
Skeletal Radiol.
1991;
20
31-36
MissingFormLabel
- 26
O’Connor P, Brereton J D, Gardner D L.
Hyaline articular cartilage dissected by papain: light and scanning electron microscopy
and micromechanical studies.
Ann Rheum Dis.
1984;
43
320-326
MissingFormLabel
- 27
Murray D G.
Experimentally Induced Arthritis Using Intra-Articular Papain.
Arthritis Rheum.
1964;
18
211-219
MissingFormLabel
- 28
Mc Cluskey R T, Thomas L.
The removal of cartilage matrix, in vivo, by papain; identification of crystalline
papain protease as the cause of the phenomenon.
J Exp Med.
1958;
108
371-384
MissingFormLabel
- 29
Farkas T, Bihari-Varga M, Biro T.
Thermoanalytical and histological study of intra-articular papain-induced degradation
and repair of rabbit cartilage. I. Immature animals.
Ann Rheum Dis.
1974;
33
385-390
MissingFormLabel
- 30
Kikuchi T, Sakuta T, Yamaguchi T.
Intra-articular injection of collagenase induces experimental osteoarthritis in mature
rabbits.
Osteoarthritis Cartilage.
1998;
6
177-186
MissingFormLabel
- 31
Wagner M, Werner A, Grunder W.
Visualization of collagenase-induced cartilage degradation using NMR microscopy.
Invest Radiol.
1999;
34
607-614
MissingFormLabel
- 32
Kempson G E, Tuke M A, Dingle J T et al.
The effects of proteolytic enzymes on the mechanical properties of adult human articular
cartilage.
Biochim Biophys Acta.
1976;
428
741-760
MissingFormLabel
- 33
Bruns J, Steinhagen J.
Lesions of articular cartilage and osteoarthrosis – Biological background.
Deutsche Zeitschrift für Sportmedizin.
2000;
51
42-47
MissingFormLabel
- 34
Stockwell R A.
Cartilage failure in osteoarthritis: relevance of normal structure and function. A
review.
Clinical Anatomy.
1991;
4
161-191
MissingFormLabel
- 35
Hollander A P, Pidoux I, Reiner A et al.
Damage to type II collagen in aging and osteoarthritis starts at the articular surface,
originates around chondrocytes, and extends into the cartilage with progressive degeneration.
J Clin Invest.
1995;
96
2859-2869
MissingFormLabel
- 36
Gelse K, der Mark von K, Aigner T et al.
Articular cartilage repair by gene therapy using growth factor-producing mesenchymal
cells.
Arthritis Rheum.
2003;
48
430-441
MissingFormLabel
- 37
Torzilli P A, Arduino J M, Gregory J D et al.
Effect of proteoglycan removal on solute mobility in articular cartilage.
J Biomech.
1997;
30
895-902
MissingFormLabel
- 38
Torzilli P A.
Effects of temperature, concentration and articular surface removal on transient solute
diffusion in articular cartilage.
Med Biol Eng Comput.
1993;
31
S93-S98
MissingFormLabel
- 39
Xia Y, Zheng S, Bidthanapally A.
Depth-dependent profiles of glycosaminoglycans in articular cartilage by microMRI
and histochemistry.
J Magn Reson Imaging.
2008;
28
151-157
MissingFormLabel
- 40
Knopp M V, Balzer T, Esser M et al.
Assessment of utilization and pharmacovigilance based on spontaneous adverse event
reporting of gadopentetate dimeglumine as a magnetic resonance contrast agent after
45 million administrations and 15 years of clinical use.
Invest Radiol.
2006;
41
491-499
MissingFormLabel
- 41
Maroudas A.
Biophysical chemistry of cartilaginous tissues with special reference to solute and
fluid transport.
Biorheology.
1975;
12
233-248
MissingFormLabel
- 42 Comper W D. Physicochemical aspects of cartilage extracellular matrix. In Cartilage: Molecular Aspects. Boston: CRC; 1991: 59-96
MissingFormLabel
- 43
Langsjo T K, Hyttinen M, Pelttari A et al.
Electron microscopic stereological study of collagen fibrils in bovine articular cartilage:
volume and surface densities are best obtained indirectly (from length densities and
diameters) using isotropic uniform random sampling.
J Anat.
1999;
195
281-293
MissingFormLabel
- 44
Alford J W, Cole B J.
Cartilage restoration, part 1: basic science, historical perspective, patient evaluation,
and treatment options.
Am J Sports Med.
2005;
33
295-306
MissingFormLabel
- 45
Bullough P G, Yawitz P S, Tafra L et al.
Topographical variations in the morphology and biochemistry of adult canine tibial
plateau articular cartilage.
J Orthop Res.
1985;
3
1-16
MissingFormLabel
- 46
Weiss C, Mirow S.
An ultrastructural study of osteoarthritis changes in the articular cartilage of human
knees.
J Bone Joint Surg Am.
1972;
54
954-972
MissingFormLabel
- 47
Muir H, Bullough P, Maroudas A.
The distribution of collagen in human articular cartilage with some of its physiological
implications.
J Bone Joint Surg Br.
1970;
52
554-563
MissingFormLabel
- 48
Fishbein K W, Gluzband Y A, Spencer R GS.
Measurements of Fixed Charge Density in Bovine Nasal Cartilage using Gd-DOTA.
Proc Intl Soc Mag Reson Med.
2002;
10
65
MissingFormLabel
- 49
Bolis S, Handley C J, Comper W D.
Passive loss of proteoglycan from articular cartilage explants.
Biochim Biophys Acta.
1989;
993
157-167
MissingFormLabel
- 50
Pintaske J, Martirosian P, Graf H et al.
Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate
Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla.
Invest Radiol.
2006;
41
213-221
MissingFormLabel
- 51
Giesel F L, Tengg-Kobligk von H, Wilkinson I D et al.
Influence of human serum albumin on longitudinal and transverse relaxation rates (r1
and r2) of magnetic resonance contrast agents.
Invest Radiol.
2006;
41
222-228
MissingFormLabel
- 52
Herborn C U, Jager-Booth I, Lodemann K P et al.
Multicenter analysis of tolerance and clinical safety of the extracellular MR contrast
agent gadobenate dimeglumine (MultiHance).
Fortschr Röntgenstr.
2009;
181
652-657
MissingFormLabel
- 53
Reichenbach J R, Hacklander T, Harth T et al.
1 H T 1 and T 2 measurements of the MR imaging contrast agents Gd-DTPA and Gd-DTPA
BMA at 1.5 T.
Eur Radiol.
1997;
7
264-274
MissingFormLabel
- 54
Wiener E, Settles M, Diederichs G.
T2 relaxation time of hyaline cartilage in presence of different gadolinium-based
contrast agents.
Contrast Media Mol Imaging.
2010;
5
99-104
MissingFormLabel
Dr. Edzard Wiener
Institut für Radiologie, Charité Universitätsmedizin Berlin
Charitéplatz 1
10117 Berlin
Phone: ++ 49/30/4 50 52 71 02
Fax: ++ 49/30/4 50 52 79 03
Email: edzard.wiener@charite.de