Zusammenfassung
Ziel: Ziel dieser Studie war die Evaluation einer 3-stufigen MRA-Technik mit zeitaufgelösten
Messungen an Ober- und Unterschenkeln hinsichtlich unerwünschter venöser Überlagerungen.
Material und Methoden: In dieser retrospektiven Studie wurde bei 150 Patienten an einem 1,5 T System eine
Becken-Bein-MRA nach einem 3-stufigen Protokoll mit 3 KM-Teilinjektionen (Menge: je
0,1 mmol/kg eines 1-molaren KM) durchgeführt. An der Ober- und Unterschenkeletage
kamen zeitaufgelöste Messungen zum Einsatz. Die Auswertung erfolgte hinsichtlich Vorhandensein
und Ausprägung unerwünschter venöser Überlagerungen bzw. des Auftretens inadäquaten
Kontrastmittel-Timings. Ergebnisse: Generell war die MRA technisch erfolgreich durchführbar, die allgemeine Bildqualität
in 127 / 150 Fällen exzellent (84,7 %), in 21 Fällen (14,0 %) leicht eingeschränkt
bzw. in 2 Fällen (1,3 %) noch ausreichend. Eine unzureichende Bildqualität lag in
keinem Fall vor. In den meisten Fällen wurde keine venöse Überlagerung gefunden (139
/ 150, 92,7 %). Geringfügige bzw. moderate Überlagerungen, diagnostisch nicht relevant,
wurden in 7 Fällen (4,6 %) bzw. in 4 Fällen (2,7 %) gefunden. Eine relevante Überlagerung
lag in keinem Fall vor. In den 11 Fällen leichter Überlagerung trat diese in 8 Fällen
isoliert am Unterschenkel, in 2 Fällen am Ober- und Unterschenkel und in einem Fall
isoliert am Oberschenkel auf. Klinisch lag in 10 der 11 Fälle mit venöser Überlagerung
eine schwere pAVK im klinischen Stadium IV vor. Schlussfolgerung: Die 3-stufige MRA der Becken-Bein-Etage mit dynamischer Messung von Ober- und Unterschenkeln
ist ein suffizientes Verfahren für die Praxis, wobei neben dem Problem von Laufzeitunterschieden
die Problematik einer eingeschränkten diagnostischen Sicherheit durch venöse Überlagerungen
und Verfehlen des arteriellen Bolus nicht mehr besteht.
Abstract
Purpose: The aim of this retrospective study was to evaluate peripheral MRA using time-resolved
measurements at the femoral as well as the calf level with regard to the presence
of unwanted venous overlap. Materials and Methods: 150 patients were examined using a 1.5 T MRI unit for a three-step CE MRA approach
with three partial injections of contrast agent (0.1 mmol/kg body weight of 1 molar
contrast agent). Dynamic time-resolved measurements were used at the femoral as well
the calf level. The images were analyzed with respect to the presence and grade of
unwanted venous overlap as well as inadequate bolus timing. Results: In all cases, MRA was technically successful. The overall image quality was assessed
as excellent in 127 / 150 cases (84.7 %), as mildly limited in 21 cases (14 %) and
as moderately limited, but still diagnostic in 2 cases (1.3 %). No obvious overlap
was found in 139 of 150 cases (92.7 %). Non-diagnostically relevant minor overlap
was found in 7 cases (4.6 %) and non-diagnostically relevant moderate overlap in 4
cases (2.7 %). Relevant venous overlap did not occur. Those 11 cases with minor or
moderate overlap occurred at the calf level in 8 cases, at the calf and femoral level
in 2 cases and at the femoral level only in one case. In 10 out of 11 cases, peripheral
artery occlusive disease was classified as category IV (Fontaine). Conclusion: Three-step time-resolved CE MRA with dynamic measurements at the calf as well the
femoral level can be considered as a safe and accurate technique for MRA of the lower
limbs without significant venous overlap and without risk of inadequate bolus timing.
Furthermore, it solves the problem of run time differences.
Key words
arteries - CE MRA - peripheral arterial occlusive disease - single-step technique
- time-resolved MRA - venous overlap
Literatur
1
Ersoy H, Rybicki F J.
MR angiography of the lower extremities.
Am J Roentgenol.
2008;
190
1675-1684
2
Kramer H et al.
Peripheral MR angiography.
Magn Reson Imaging Clin N Am.
2009;
17
91-100
3
Lenhart M et al.
Contrast-enhanced MR angiography in the routine work-up of the lower extremity arteries.
Fortschr Röntgenstr.
2002;
174
1289-1295
4
Meaney J F.
Magnetic resonance angiography of the peripheral arteries: current status.
Eur Radiol.
2003;
13
836-852
5
Shah D J et al.
Magnetic resonance evaluation of peripheral arterial disease.
Magn Reson Imaging Clin N Am.
2007;
15
653-679, vii
6
Treitl M et al.
Peripheral arterial disease. Diagnosis and therapy according to current guidelines.
Radiologe.
2008;
48
1022-1028, 1030 – 1031
7
Ho K Y et al.
Peripheral MR angiography.
Eur Radiol.
1999;
9
1765-1774
8
Loewe C et al.
Peripheral vascular occlusive disease: evaluation with contrast-enhanced moving-bed
MR angiography versus digital subtraction angiography in 106 patients.
Am J Roentgenol.
2002;
179
1013-1021
9
Berg F et al.
Hybrid contrast-enhanced MR angiography of pelvic and lower extremity vasculature
at 3.0T: initial experience.
Eur J Radiol.
2009;
70
170-176
10
Schmitt R et al.
Comprehensive MR angiography of the lower limbs: a hybrid dual-bolus approach including
the pedal arteries.
Eur Radiol.
2005;
15
2513-2524
11
Kalle von T et al.
Contrast-enhanced MR angiography (CEMRA) in peripheral arterial occlusive disease
(PAOD): conventional moving table technique versus hybrid technique.
Fortschr Röntgenstr.
2004;
176
62-69
12
Andreisek G et al.
Peripheral arteries in diabetic patients: standard bolus-chase and time-resolved MR
angiography.
Radiology.
2007;
242
610-620
13
Dinter D J et al.
Peripheral bolus-chase MR angiography: analysis of risk factors for nondiagnostic
image quality of the calf vessels – a combined retrospective and prospective study.
Am J Roentgenol.
2009;
193
234-240
14
Meissner O A et al.
Critical limb ischemia: hybrid MR angiography compared with DSA.
Radiology.
2005;
235
308-318
15
Wang Y et al.
Contrast-enhanced peripheral MR angiography from the abdominal aorta to the pedal
arteries: combined dynamic two-dimensional and bolus-chase three-dimensional acquisitions.
Invest Radiol.
2001;
36
170-177
16
Voth M et al.
Peripheral magnetic resonance angiography with continuous table movement in combination
with high spatial and temporal resolution time-resolved MRA with a total single dose
(0.1 mmol/kg) of gadobutrol at 3.0T.
Invest Radiol.
2009;
44
627-633
17
Steffens J C et al.
Bolus-chasing contrast-enhanced 3D MRA of the lower extremity. Comparison with intraarterial
DSA.
Acta Radiol.
2003;
44
185-192
18
Wang Y et al.
Bolus arterial-venous transit in the lower extremity and venous contamination in bolus
chase three-dimensional magnetic resonance angiography.
Invest Radiol.
2002;
37
458-463
19
Prince M R et al.
Contrast material travel times in patients undergoing peripheral MR angiography.
Radiology.
2002;
224
55-61
20
Wang Y et al.
Bolus-chase MR digital subtraction angiography in the lower extremity.
Radiology.
1998;
207
263-269
21
Binkert C A et al.
Peripheral vascular disease: blinded study of dedicated calf MR angiography versus
standard bolus-chase MR angiography and film hard-copy angiography.
Radiology.
2004;
232
860-866
22
Vries de M et al.
Contrast-enhanced peripheral MR angiography using SENSE in multiple stations: feasibility
study.
J Magn Reson Imaging.
2005;
21
37-45
23
Muthupillai R et al.
Direct comparison of sensitivity encoding (SENSE) accelerated and conventional 3D
contrast enhanced magnetic resonance angiography (CE-MRA) of renal arteries: effect
of increasing spatial resolution.
J Magn Reson Imaging.
2010;
31
149-159
24
Watts R et al.
Anatomically tailored k-Space sampling for bolus-chase three-dimensional MR digital
subtraction angiography.
Radiology.
2001;
218
899-904
25
Zhang H L et al.
Decreased venous contamination on 3D gadolinium-enhanced bolus chase peripheral mr
angiography using thigh compression.
Am J Roentgenol.
2004;
183
1041-1047
26
Janka R et al.
Contrast-enhanced MR angiography of peripheral arteries including pedal vessels at
1.0T: feasibility study with dedicated peripheral angiography coil.
Radiology.
2005;
235
319-326
27
Schafer F K et al.
First clinical results in a study of contrast enhanced magnetic resonance angiography
with the 1.0 molar gadobutrol in peripheral arterial occlusive disease – comparison
to intraarterial DSA.
Fortschr Röntgenstr.
2003;
175
556-564
28
Schmitt R et al.
MR angiography of pelvic and leg arteries: initiation with time-resolved data acquisition
of the lower legs.
Röntgenpraxis.
2001;
54
83-92
29
Carroll T J et al.
The effect of injection rate on time-resolved contrast-enhanced peripheral MRA.
J Magn Reson Imaging.
2001;
14
401-410
30
Low G et al.
Technical inadequacies of peripheral contrast-enhanced magnetic resonance angiography:
incidence, causes and management strategies.
Clin Radiol.
2006;
61
937-945
31
Pandharipande P V et al.
Two-station bolus-chase MR angiography with a stationary table: a simple alternative
to automated-table techniques.
Am J Roentgenol.
2002;
179
1583-1589
32
Ginthoer C et al..
MRA der Becken-Bein-Arterien: Das Problem der venösen Überlagerungen ist gelöst!.
Fortschr Röntgenstr.
2010;
182
302
33
Diehm N et al.
Magnetic resonance angiography in infrapopliteal arterial disease: prospective comparison
of 1.5 and 3 Tesla magnetic resonance imaging.
Invest Radiol.
2007;
42
467-476
34
Nielsen Y W et al.
Whole-body magnetic resonance angiography at 3 tesla using a hybrid protocol in patients
with peripheral arterial disease.
Cardiovasc Intervent Radiol.
2009;
32
877-886
35
Nael K et al.
Peripheral contrast-enhanced MR angiography at 3.0 T, improved spatial resolution
and low dose contrast: initial clinical experience.
Eur Radiol.
2008;
18
2893-2900
36
Michaely H J et al.
Abdominal and pelvic MR angiography.
Magn Reson Imaging Clin N Am.
2007;
15
301-314, v–vi
Prof. Franz A. Fellner
Zentrales Radiologie Institut, Allgemeines Krankenhaus (AKH)
Krankenhausstrasse 9
4020 Linz
Österreich
Phone: ++ 43/7 32/78 06 20 49
Fax: ++ 43/7 32/78 06 20 99
Email: franz.fellner@akh.linz.at