Semin Reprod Med 2009; 27(5): 417-428
DOI: 10.1055/s-0029-1237430
Published in 2009 by Thieme Medical Publishers

Imprinting Disorders and Assisted Reproductive Technology

Carter M. Owen1 , 2 , James H. Segars1
  • 1Reproductive Biology and Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
  • 2Clinical Research Training Program, National Institutes of Health, Clinical Center, Bethesda, Maryland
Further Information

Publication History

Publication Date:
26 August 2009 (online)

ABSTRACT

Worldwide use of assisted reproductive technology (ART) accounts for an estimated 1 to 3% of births. Since 2002, a series of reports have suggested an increased risk of imprinting disorders (Beckwith-Wiedemann syndrome and Angelman syndrome) in children conceived by ART. Definitive conclusions are difficult to substantiate due to the rarity of imprinting disorders and the variability in ART protocols. Despite these limitations, there is biological plausibility for alteration in nongenomic inheritance caused by ART. Animal studies have shown that ART procedures can alter normal imprinting, specifically DNA methylation patterns. Collectively, studies suggest an association between ART and loss of maternal methylation. More recent reports examined a possible association between ART and global hypomethylation of DNA. Three other imprinting disorders (Silver-Russell syndrome, maternal hypomethylation syndrome, and retinoblastoma) have also been implicated, but there is insufficient evidence to establish an association of these syndromes with ART. Based on current evidence, the absolute risk of imprinting disorders after ART remains small and does not warrant routine screening. Large prospective studies are needed to better understand the risks associated with imprinting disorders, imprinting defects, and ART.

REFERENCES

  • 1 Centers for Disease Control and Prevention .American Society for Reproductive Medicine SfART. 2005 assisted reproductive technology success rates: national summary and fertility clinic reports. Atlanta, GA; Centers for Disease Control and Prevention 2007
  • 2 Wright V C, Schieve L A, Reynolds M A, Jeng G. Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention (CDC) . Assisted reproductive technology surveillance—United States, 2002.  MMWR Surveill Summ. 2005;  54(2) 1-24
  • 3 Huang J C, Lei Z L, Shi L H et al.. Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos.  Biochem Biophys Res Commun. 2007;  354(1) 77-83
  • 4 Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development.  Science. 2001;  293(5532) 1089-1093
  • 5 Wilkins-Haug L. Assisted reproductive technology, congenital malformations, and epigenetic disease.  Clin Obstet Gynecol. 2008;  51(1) 96-105
  • 6 Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology.  Fertil Steril. 2009;  91(2) 305-315
  • 7 Allegrucci C, Thurston A, Lucas E, Young L. Epigenetics and the germline.  Reproduction. 2005;  129(2) 137-149
  • 8 Hartmann S, Bergmann M, Bohle R M, Weidner W, Steger K. Genetic imprinting during impaired spermatogenesis.  Mol Hum Reprod. 2006;  12(6) 407-411
  • 9 Hajkova P, Erhardt S, Lane N et al.. Epigenetic reprogramming in mouse primordial germ cells.  Mech Dev. 2002;  117(1–2) 15-23
  • 10 Obata Y, Kaneko-Ishino T, Koide T et al.. Disruption of primary imprinting during oocyte growth leads to the modified expression of imprinted genes during embryogenesis.  Development. 1998;  125(8) 1553-1560
  • 11 Jacob S, Moley K H. Gametes and embryo epigenetic reprogramming affect developmental outcome: implication for assisted reproductive technologies.  Pediatr Res. 2005;  58(3) 437-446
  • 12 Schieve L A, Rasmussen S A, Reefhuis J. Risk of birth defects among children conceived with assisted reproductive technology: providing an epidemiologic context to the data.  Fertil Steril. 2005;  84(5) 1320-1324; discussion 1327
  • 13 Buck Louis G M, Schisterman E F, Dukic V M, Schieve L A. Research hurdles complicating the analysis of infertility treatment and child health.  Hum Reprod. 2005;  20(1) 12-18
  • 14 Thorburn M J, Wright E S, Miller C G, Smith-Read E H. Exomphalos-macroglossia-gigantism syndrome in Jamaican infants.  Am J Dis Child. 1970;  119(4) 316-321
  • 15 Elliott M, Bayly R, Cole T, Temple I K, Maher E R. Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases.  Clin Genet. 1994;  46(2) 168-174
  • 16 Wiedemann H. Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome.  Eur J Pediatr. 1983;  141 129
  • 17 Junien C. Beckwith-Wiedemann syndrome, tumourigenesis and imprinting.  Curr Opin Genet Dev. 1992;  2(3) 431-438
  • 18 Weksberg R, Smith A C, Squire J, Sadowski P. Beckwith-Wiedemann syndrome demonstrates a role for epigenetic control of normal development.  Hum Mol Genet. 2003;  12(Spec No 1) R61-68
  • 19 Weksberg R, Shuman C, Smith A C. Beckwith-Wiedemann syndrome.  Am J Med Genet C Semin Med Genet. 2005;  137C(1) 12-23
  • 20 Clayton-Smith J, Read A P, Donnai D. Monozygotic twinning and Wiedemann-Beckwith syndrome.  Am J Med Genet. 1992;  42(4) 633-637
  • 21 Weksberg R, Shuman C, Caluseriu O et al.. Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome.  Hum Mol Genet. 2002;  11(11) 1317-1325
  • 22 DeBaun M R, Niemitz E L, Feinberg A P. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19.  Am J Hum Genet. 2003;  72(1) 156-160
  • 23 Centers for Disease Control and Prevention .American Society for Reproductive Medicine SART. 2000 Assisted Reproductive Technology Success Rates: National Summary and Fertility Clinic Reports. Atlanta, GA; Centers for Disease Control and Prevention 2002
  • 24 Centers for Disease Control and Prevention .American Society for Reproductive Medicine SART. 2001 Assisted Reproductive Technology Success Rates: National Summary and Fertility Clinic Reports. Atlanta, GA; Centers for Disease Control and Prevention 2003
  • 25 Centers for Disease Control and Prevention .American Society for Reproductive Medicine SART. 2002 Assisted Reproductive Technology Success Rates: National Summary and Fertility Clinic Reports. Atlanta, GA; Centers for Disease Control and Prevention 2004
  • 26 Maher E R, Brueton L A, Bowdin S C et al.. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART).  J Med Genet. 2003;  40(1) 62-64
  • 27 Gicquel C, Gaston V, Mandelbaum J, Siffroi J P, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene.  Am J Hum Genet. 2003;  72(5) 1338-1341
  • 28 Halliday J, Oke K, Breheny S, Algar E, J Amor D. Beckwith-Wiedemann syndrome and IVF: a case-control study.  Am J Hum Genet. 2004;  75(3) 526-528
  • 29 Chang A S, Moley K H, Wangler M, Feinberg A P, DeBaun M R. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology: a case series of 19 patients.  Fertil Steril. 2005;  83(2) 349-354
  • 30 Lidegaard O, Pinborg A, Andersen A N. Imprinting diseases and IVF: Danish National IVF cohort study.  Hum Reprod. 2005;  20(4) 950-954
  • 31 Källén B, Finnström O, Nygren K G, Olausson P O. In vitro fertilization (IVF) in Sweden: infant outcome after different IVF fertilization methods.  Fertil Steril. 2005;  84(3) 611-617
  • 32 Sutcliffe A G, Peters C J, Bowdin S et al.. Assisted reproductive therapies and imprinting disorders—a preliminary British survey.  Hum Reprod. 2006;  21(4) 1009-1011
  • 33 Bowdin S, Allen C, Kirby G et al.. A survey of assisted reproductive technology births and imprinting disorders.  Hum Reprod. 2007;  22(12) 3237-3240
  • 34 Doornbos M E, Maas S M, McDonnell J, Vermeiden J P, Hennekam R C. Infertility, assisted reproduction technologies and imprinting disturbances: a Dutch study.  Hum Reprod. 2007;  22(9) 2476-2480
  • 35 Rossignol S, Steunou V, Chalas C et al.. The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region.  J Med Genet. 2006;  43(12) 902-907
  • 36 Lim D, Bowdin S C, Tee L et al.. Clinical and molecular genetic features of Beckwith-Wiedemann syndrome associated with assisted reproductive technologies.  Hum Reprod. 2009;  24(3) 741-747
  • 37 Williams C A. Neurological aspects of the Angelman syndrome.  Brain Dev. 2005;  27(2) 88-94
  • 38 Williams C A, Zori R T, Hendrickson J et al.. Angelman syndrome.  Curr Probl Pediatr. 1995;  25(7) 216-231
  • 39 Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome.  Nat Genet. 1997;  15(1) 70-73
  • 40 Matsuura T, Sutcliffe J S, Fang P et al.. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome.  Nat Genet. 1997;  15(1) 74-77
  • 41 Rougeulle C, Glatt H, Lalande M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain.  Nat Genet. 1997;  17(1) 14-15
  • 42 Cox G F, Bürger J, Lip V et al.. Intracytoplasmic sperm injection may increase the risk of imprinting defects.  Am J Hum Genet. 2002;  71(1) 162-164
  • 43 Ørstavik K H, Eiklid K, van der Hagen C B et al.. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection.  Am J Hum Genet. 2003;  72(1) 218-219
  • 44 Ludwig M, Katalinic A, Gross S, Sutcliffe A, Varon R, Horsthemke B. Increased prevalence of imprinting defects in patients with Angelman syndrome born to subfertile couples.  J Med Genet. 2005;  42(4) 289-291
  • 45 Manning M, Lissens W, Bonduelle M et al.. Study of DNA-methylation patterns at chromosome 15q11-q13 in children born after ICSI reveals no imprinting defects.  Mol Hum Reprod. 2000;  6(11) 1049-1053
  • 46 Neri Q V, Takeuchi T, Palermo G D. An update of assisted reproductive technologies results in the United States.  Ann N Y Acad Sci. 2008;  1127 41-48
  • 47 Perkins R M, Hoang-Xuan M T. The Russell-Silver syndrome: a case report and brief review of the literature.  Pediatr Dermatol. 2002;  19(6) 546-549
  • 48 Abu-Amero S, Monk D, Frost J, Preece M, Stanier P, Moore G E. The genetic aetiology of Silver-Russell syndrome.  J Med Genet. 2008;  45(4) 193-199
  • 49 Svensson J, Björnståhl A, Ivarsson S A. Increased risk of Silver-Russell syndrome after in vitro fertilization?.  Acta Paediatr. 2005;  94(8) 1163-1165
  • 50 Bliek J, Terhal P, van den Bogaard M J et al.. Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype.  Am J Hum Genet. 2006;  78(4) 604-614
  • 51 Kagami M, Nagai T, Fukami M, Yamazawa K, Ogata T. Silver-Russell syndrome in a girl born after in vitro fertilization: partial hypermethylation at the differentially methylated region of PEG1/MEST.  J Assist Reprod Genet. 2007;  24(4) 131-136
  • 52 Mackay D J, Boonen S E, Clayton-Smith J et al.. A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus.  Hum Genet. 2006;  120(2) 262-269
  • 53 Bliek J, Verde G, Callaway J et al.. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome.  Eur J Hum Genet. 2009;  17(5) 611-619
  • 54 Moll A C, Kuik D J, Bouter L M et al.. Incidence and survival of retinoblastoma in The Netherlands: a register based study 1862–1995.  Br J Ophthalmol. 1997;  81(7) 559-562
  • 55 Greger V, Passarge E, Höpping W, Messmer E, Horsthemke B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma.  Hum Genet. 1989;  83(2) 155-158
  • 56 Greger V, Debus N, Lohmann D, Höpping W, Passarge E, Horsthemke B. Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma.  Hum Genet. 1994;  94(5) 491-496
  • 57 Ohtani-Fujita N, Dryja T P, Rapaport J M et al.. Hypermethylation in the retinoblastoma gene is associated with unilateral, sporadic retinoblastoma.  Cancer Genet Cytogenet. 1997;  98(1) 43-49
  • 58 Moll A C, Imhof S M, Cruysberg J R, Schouten-van Meeteren A Y, Boers M, van Leeuwen F E. Incidence of retinoblastoma in children born after in-vitro fertilisation.  Lancet. 2003;  361(9354) 309-310
  • 59 Bradbury B D, Jick H. In vitro fertilization and childhood retinoblastoma.  Br J Clin Pharmacol. 2004;  58(2) 209-211

James H SegarsJr. M.D. 

Building 10, CRC, Room 1E-3140

10 Center Drive, MSC 1109, Bethesda, MD 20892-1109

Email: segarsj@mail.nih.gov

    >