Horm Metab Res 2009; 41(11): 822-828
DOI: 10.1055/s-0029-1231056
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Combinatory Effects of Androgen Receptor Deficiency and Hind Limb Unloading on Bone

Y. Saita1 , 2 , T. Nakamura3 , F. Mizoguchi1 , 4 , K. Nakashima1 , H. Hemmi1 , T. Hayata1 , Y. Ezura1 , 5 , H. Kurosawa2 , S. Kato3 , M. Noda1 , 4 , 5
  • 1Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
  • 2Department of Orthopedics, Juntendo University, School of Medicine, Tokyo, Japan
  • 3Institute of Molecular and Cellular Biosciences, Faculty of Medicine, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
  • 4Global Center of Excellence Program, International Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo, Japan
  • 5Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan
Further Information

Publication History

received 13.02.2009

accepted 15.06.2009

Publication Date:
23 July 2009 (online)

Abstract

Male sex hormones play a critical role in regulation of bone metabolism. In male mice lacking androgen receptor (AR), osteopenia and high turnover state in bone remodeling have been reported. However, androgen receptor's role in disuse-induced osteopenia is not known. Therefore, we examined the effects of AR deficiency on unloading-induced bone loss. Wild type or androgen receptor deficient mice (ARKO) were subjected to hind limb unloading (HU) or normal housing (Control). The groups of mice were as follows; wild type control mice (Group WT-Cont), ARKO control mice (Group ARKO-Cont), wild type HU mice (Group WT-HU), and ARKO-HU mice (Group ARKO-HU). HU reduced cancellous bone mass in ARKO (ARKO-HU) by about 70% compared to ARKO-Cont and this reduction rate was over two-fold more than that of wild type (WT-HU) (reduction by less than 30% compared to WT-Cont). Combination of ARKO and HU (ARKO-HU) resulted in the least levels of cortical bone mass and bone mineral density among the four groups. ARKO-HU group indicated the highest levels of systemic bone resorption marker, deoxypyridinoline. Osteoclast development levels in the cultures in ARKO-HU derived bone marrow cells were the highest among the four groups. These data suggest that combination of androgen receptor deficiency and hind limb unloading results in exacerbation of disuse-induced osteopenia due to the enhanced levels of bone resorption.

References

  • 1 Vicente-Rodriguez G. How does exercise affect bone development during growth?.  Sports Med. 2006;  36 561-569
  • 2 Nordstrom A, Karlsson C, Nyquist F, Olsson T, Nordstrom P, Karlsson M. Bone loss and fracture risk after reduced physical activity.  J Bone Miner Res. 2005;  20 202-207
  • 3 Takata S, Yasui N. Disuse osteoporosis.  J Med Invest. 2001;  48 147-156
  • 4 LeBlanc A, Schneider V, Shackelford L. Bone mineral and lean tissue loss after long duration space flight.  J Musculo Neur Interact. 2000;  1 157-160
  • 5 LeBlanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM. Bone mineral loss and recovery after 17 weeks of bed rest.  J Bone Miner Res. 1990;  5 843-850
  • 6 Liedert A, Kaspar D, Blakytny R, Claes L, Ignatius A. Signal transduction pathways involved in mechanotransduction in bone cells.  Biochem Biophys Res Commun. 2006;  349 1-5
  • 7 Looker AC, Orwoll ES, Johnston Jr CC, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP. Prevalence of low femoral bone density in older U.S. adults from NHANES III.  J Bone Miner Res. 1997;  12 1761-1768
  • 8 Orwoll ES. Osteoporosis in men.  Endocr Rev. 1995;  16 87-116
  • 9 Stepan JJ, Lachman M, Zverina J, Pacovsky V, Baylink DJ. Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling.  J Clin Endocrinol Metab. 1989;  69 523-527
  • 10 Morote J, Orsola A, Abascal JM, Planas J, Trilla E, Raventos CX, Cecchini L, Encabo G, Reventos J. Bone mineral density changes in patients with prostate cancer during the first 2 years of androgen suppression.  J Urol. 2006;  175 1679-1683
  • 11 Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer.  N Engl J Med. 2005;  352 154-164
  • 12 Qoubaitary A, Swerdloff RS, Wang C. Advances in male hormone substitution therapy.  Expert Opin Pharmacother. 2005;  9 1493-1506
  • 13 Gori F, Hofbauer LC, Conover CA, Khosla S. Effects of androgens on the insulin-like growth factor system in an androgen-responsive human osteoblastic cell line.  Endocrinology. 1999;  140 5579-5586
  • 14 Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC. Increased osteoclast development after estrogen loss: mediation by interleukin-6.  Science. 1992;  257 88-91
  • 15 Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R. Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation.  J Biol Chem. 2001;  276 8836-8840
  • 16 Kawano H, Sato T, Yamada T, Matsumoto T, Sekine K, Watanabe T, Nakamura T, Fukuda T, Yoshimura K, Yoshizawa T, Aihara K, Yamamoto Y, Nakamichi Y, Metzger D, Chambon P, Nakamura K, Kawaguchi H, Kato S. Suppressive function of androgen receptor in bone resorption.  Proc Natl Acad Sci U S A. 2003;  100 9416-9421
  • 17 Lee KC, Lanyon LE. Mechanical loading influences bone mass through estrogen receptor alpha.  Exerc Sport Sci Rev. 2004;  32 64-68
  • 18 Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L. Endocrinology: bone adaptation requires oestrogen receptor-alpha.  Nature. 2003;  424 389
  • 19 van den Beld AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men.  J Clin Endocrinol Metab. 2000;  85 3276-3282
  • 20 Snow-Harter C, Whalen R, Myburgh K, Arnaud S, Marcus R. Bone mineral density, muscle strength, and recreational exercise in men.  J Bone Miner Res. 1992;  11 1291-1296
  • 21 Kitahara K, Ishijima M, Rittling SR, Tsuji K, Kurosawa H, Nifuji A, Denhardt DT, Noda M. Osteopontin deficiency induces parathyroid hormone enhancement of cortical bone formation.  Endocrinology. 2003;  144 2132-2140
  • 22 Ahlborg HG, Johnell O, Turner CH, Rannevik G, Karlsson MK. Bone loss and bone size after menopause.  N Engl J Med. 2003;  349 327-334
  • 23 Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people.  Lancet. 2005;  366 1885-1893
  • 24 Imai Y, Nakamura T, Matsumoto T, Inoue K, Kondoh S, Sato T, Takaoka K, Kato S. Osteoblastic androgen receptor regulates cortical bone mineral density.  J Bone Mineral Res. 2008;  23 s35
  • 25 Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts.  Cell. 2007;  130 811-823
  • 26 Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR.  Nucleic Acids Res. 2001;  29 2002-2007

Correspondence

Dr. M. Noda

Department of Molecular Pharmacology

Medical Research Institute

Tokyo Medical and Dental University

3-10 Kanda-Surugadai

2-chome Chiyoda-ku

Tokyo 101

Japan

Phone: +81/3/5280 80 66

Fax: +81/3/5280 80 66

Email: noda.mph@mri.tmd.ac.jp

    >