Horm Metab Res 2009; 41(10): 747-751
DOI: 10.1055/s-0029-1224181
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Prolactin Suppresses Malonyl-CoA Concentration in Human Adipose Tissue

L. A. Nilsson1 , C. Roepstorff2 , B. Kiens2 , H. Billig1 , C. Ling3
  • 1Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
  • 2The Copenhagen Muscle Research Centre, Molecular Physiology Group, Section of Human Physiology, Institute of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark
  • 3Department of Clinical Science, Lund University Diabetes Center, CRC, Lund University, University Hospital MAS, Malmö, Sweden
Further Information

Publication History

received 08.12.2008

accepted 06.05.2009

Publication Date:
23 June 2009 (online)

Abstract

Prolactin is best known for its involvement in lactation, where it regulates mechanisms that supply nutrients for milk production. In individuals with pathological hyperprolactinemia, glucose and fat homeostasis have been reported to be negatively influenced. It is not previously known, however, whether prolactin regulates lipogenesis in human adipose tissue. The aim of this study was to investigate the effect of prolactin on lipogenesis in human adipose tissue in vitro. Prolactin decreased the concentration of malonyl-CoA, the product of the first committed step in lipogenesis, to 77±6% compared to control 100±5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 (GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue as a consequence of suppressed malonyl-CoA concentration in parallel with decreased GLUT-4 expression. In the lactating woman, this regulation in adipose tissue may enhance the provision of nutrients for the infant instead of nutrients being stored in adipose tissue. In hyperprolactinemic individuals, a suppressed lipogenesis could contribute to an insulin resistant state with consequences for the health.

References

  • 1 Smith RW. The effects of pregnancy, lactation and involution on the metabolism of glucose by rat parametrial adipose tissue.  J Dairy Res. 1973;  40 353-360
  • 2 Romsos DR, Muiruri KL, Lin PY, Leveille GA. Influence of dietary fat, fasting, and acute premature weaning on in vivo rates of fatty acid synthesis in lactating mice.  Proc Soc Exp Biol Med. 1978;  159 308-312
  • 3 Vernon RG, Clegg RA, Flint DJ. Metabolism of sheep adipose tissue during pregnancy and lactation. Adaptation and regulation.  Biochem J. 1981;  200 307-314
  • 4 Barber MC, Travers MT, Finley E, Flint DJ, Vernon RG. Growth-hormone-prolactin interactions in the regulation of mammary and adipose-tissue acetyl-CoA carboxylase activity and gene expression in lactating rats.  Biochem J. 1992;  285 (( Pt 2)) 469-475
  • 5 Barber MC, Clegg RA, Finley E, Vernon RG, Flint DJ. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation.  J Endocrinol. 1992;  135 195-202
  • 6 Ling C, Hellgren G, Gebre-Medhin M, Dillner K, Wennbo H, Carlsson B, Billig H. Prolactin (PRL) receptor gene expression in mouse adipose tissue: increases during lactation and in PRL-transgenic mice.  Endocrinology. 2000;  141 3564-3572
  • 7 Ling C, Svensson L, Odén B, Weijdegård B, Edén B, Edén S, Billig H. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue.  J Clin Endocrinol Metab. 2003;  88 1804-1808
  • 8 Nilsson L, Binart N, Bohlooly YM, Bramnert M, Egecioglu E, Kindblom J, Kelly PA, Kopchick JJ, Ormandy CJ, Ling C, Billig H. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue.  Biochem Biophys Res Commun. 2005;  331 1120-1126
  • 9 Herman MA, Kahn BB. Glucose transport and sensing in the maintenance of glucose homeostasis and metabolic harmony.  J Clin Invest. 2006;  116 1767-1775
  • 10 Ruderman NB, Saha AK, Kraegen EW. Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity.  Endocrinology. 2003;  144 5166-5171
  • 11 Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes.  Nature. 2005;  436 356-362
  • 12 Graham TE, Kahn BB. Tissue-specific alterations of glucose transport and molecular mechanisms of intertissue communication in obesity and type 2 diabetes.  Horm Metab Res. 2007;  39 717-721
  • 13 Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JF, Richter EA, Kiens B. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise.  Am J Physiol Endocrinol Metab. 2005;  288 E133-E142
  • 14 Zinder O, Hamosh M, Fleck TR, Scow RO. Effect of prolactin on lipoprotein lipase in mammary glands and adipose tissue of rats.  Am J Physiol. 1974;  226 742-748
  • 15 Landgraf R, Landraf-Leurs MM, Weissmann A, Hörl R, Werder von K, Scriba PC. Prolactin: a diabetogenic hormone.  Diabetologia. 1977;  13 99-104
  • 16 Tourniaire J, Pallo D, Pousset G, Bizollon C, Bachelot I. Diminished glucose tolerance and hyperinsulinism due to prolactin secreting adenoma.  Nouv Presse Med. 1974;  3 1705-1707
  • 17 Foss MC, Paula FJ, Paccola GM, Piccinato CE. Peripheral glucose metabolism in human hyperprolactinaemia.  Clin Endocrinol (Oxf). 1995;  43 721-726
  • 18 Greenman Y, Tordjman K, Stern N. Increased body weight associated with prolactin secreting pituitary adenomas: weight loss with normalization of prolactin levels.  Clin Endocrinol (Oxf). 1998;  48 547-553
  • 19 Naliato EC, Violante AH, Caldas D, Lamounier Filho A, Loureiro CR, Fontes R, Schrank Y, Souza RG, Costa PL, Colao A. Body fat in nonobese women with prolactinoma treated with dopamine agonists.  Clin Endocrinol (Oxf). 2007;  67 845-852
  • 20 Henderson DC, Doraiswamy PM. Prolactin-related and metabolic adverse effects of atypical antipsychotic agents.  J Clin Psychiatry. 2008;  69 ((Suppl 1)) 32-44
  • 21 Baptista T, Zarate J, Joober R, Colasante C, Beaulieu S, Paez X, Hernandez L. Drug induced weight gain, an impediment to successful pharmacotherapy: focus on antipsychotics.  Curr Drug Targets. 2004;  5 279-299
  • 22 Frayn KN, Tan GD, Karpe F. Adipose tissue: a key target for diabetes pathophysiology and treatment?.  Horm Metab Res. 2007;  39 739-742
  • 23 Flint DJ, Clegg RA, Vernon RG. Prolactin and the regulation of adipose-tissue metabolism during lactation in rats.  Mol Cell Endocrinol. 1981;  22 265-275
  • 24 Forsyth IA, Wallis M. Growth hormone and prolactin – molecular and functional evolution.  J Mammary Gland Biol Neoplasia. 2002;  7 291-312
  • 25 Ng TB. Studies on hormonal regulation of lipolysis and lipogenesis in fat cells of various mammalian species.  Comp Biochem Physiol B. 1990;  97 441-446
  • 26 Rosenbaum M, Gertner JM, Leibel RL. Effects of systemic growth hormone (GH) administration on regional adipose tissue distribution and metabolism in GH-deficient children.  J Clin Endocrinol Metab. 1989;  69 1274-1281
  • 27 Ryan EA, Enns L. Role of gestational hormones in the induction of insulin resistance.  J Clin Endocrinol Metab. 1988;  67 341-347
  • 28 Jarrett JCN, Ballejo G, Saleem TH, Tsibris JC, Spellacy WN. The effect of prolactin and relaxin on insulin binding by adipocytes from pregnant women.  Am J Obstet Gynecol. 1984;  149 250-255
  • 29 Asai-Sato M, Okamoto M, Endo M, Yoshida H, Murase M, Ikeda M, Sakakibara H, Takahashi T, Hirahara F. Hypoadiponectinemia in lean lactating women: Prolactin inhibits adiponectin secretion from human adipocytes.  Endocr J. 2006;  53 555-562

Correspondence

L. A. Nilsson

Institute of Neuroscience and Physiology

Sahlgrenska Academy at University of Gothenburg

P. O. Box 434

405 30 Göteborg

Sweden

Phone: +46/31/786 3533

Fax: +46/31/786 3512

Email: louise.nilsson@gu.se

    >