Klinische Neurophysiologie 2009; 40(2): 134-141
DOI: 10.1055/s-0029-1224120
Originalia

© Georg Thieme Verlag KG Stuttgart · New York

Transkranielle Stimulation in der Neurorehabilitation

Transcranial Stimulation in Neurological RehabilitationF. C. Hummel 1
  • 1BrainImaging and NeuroStimulation (BINS) Labor, Klinik und Poliklinik für Neurologie, Universitätsklinikum Eppendorf, Hamburg
Further Information

Publication History

Publication Date:
01 July 2009 (online)

Zusammenfassung

Schlaganfall ist der Hauptgrund für Langzeitbehinderung und schränkt das berufliche, private und soziale Leben der Patienten signifikant ein. In Deutschland erleiden jedes Jahr zwischen 200 000 und 250 000 Menschen einen Schlaganfall. Leider erholt sich nur ein kleiner Teil der Patient so, dass sie ihr vorheriges berufliches und soziales Leben wieder voll aufnehmen können. Trotz grosser Anstrengungen zur Entwicklung neuer, effizienter Therapieverfahren ist das Ausmaß der funktionellen Regeneration nach Schlaganfall noch nicht zufrieden stellend. Daher hat die Entwicklung neuer, innovativer und effizienter Therapieverfahren eine grosse Bedeutung für Patienten, deren Umfeld und für das Gesundheitssystem. In ersten ,Proof-of-Principle-Studien‘ konnte nicht-invasive kortikale Hirnstimulation als eine viel versprechende Methode zur Verbesserung der funktionellen Regeneration nach Schlaganfall identifiziert werden. Zur Anwendung kommen die transkranielle Magnetstimulation (TMS) und die transkranielle Gleichstromstimulation (TDCS). In der folgenden Übersichtsarbeit sollen interventionelle Strategien, basierend auf kortikaler Hirnstimulation, im Hinblick auf funktionelle Regeneration nach Schlaganfall vorgestellt und diskutiert werden.

Abstract

Stroke is the leading cause of long-term disability, which significantly impairs the economic and social life of patients and society. Every year 200 000–250 000 patients suffer a stroke in Germany. Only a small number of the stroke survivors recover to a degree that allows them to return into their professional and private life. Despite significant efforts to develop novel and efficient treatment strategies, the level of functional regeneration is still not satisfactory. Thus, the development of innovative and effective treatment strategies will have a major impact for the patients′ life, the society and the public health system. In human beings, ‘proof-of-principle studies’ from different laboratories have shown that non-invasive interventional brain stimulation strategies such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) result in an improvement of sensorimotor functioning of the paretic hand in patients with stroke. In this paper these mechanistically oriented interventional approaches, based on cortical stimulation, are reviewed.

Literatur

  • 1 Adkins-Muir DL, Jones TA. Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats.  Neurol Res. 2003;  25 780-788
  • 2 Boggio PS, Alonso-Alonso M, Mansur CG. et al . Hand function improvement with low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere in a severe case of stroke.  Am J Phys Med Rehabil. 2006;  85 927-930
  • 3 Brown JA, Lutsep H, Cramer SC. et al . Motor cortex stimulation for enhancement of recovery after stroke: case report.  Neurol Res. 2003;  25 815-818
  • 4 Brown JA, Lutsep HL, Weinand M. et al . Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study.  Neurosurgery. 2006;  58 464-473
  • 5 Calford MB, Tweedale R. Interhemispheric transfer of plasticity in the cerebral cortex.  Science. 1990;  249 805-807
  • 6 Celnik P, Paik NJ, Vandermeeren Y. et al . Effects of combined peripheral nerve stimulation and brain polarization on performance of a motor sequence task after chronic stroke.  Stroke. 2009;  40 1764-1771
  • 7 Cicinelli P, Pasqualetti P, Zaccagnini M. et al . Interhemispheric asymmetries of motor cortex excitability in the postacute stroke stage: a paired-pulse transcranial magnetic stimulation study.  Stroke. 2003;  34 2653-2658
  • 8 Di Lazzaro V, Pilato F, Oliviero A. et al . Origin of facilitation of motor-evoked potentials after paired magnetic stimulation: direct recording of epidural activity in conscious humans.  J Neurophysiol. 2006;  96 1765-1771
  • 9 Dobkin B. The economic impact of stroke.  Neurology. 1995;  45 S6-9
  • 10 Duque J, Hummel F, Celnik P. et al . Transcallosal inhibition in chronic subcortical stroke.  Neuroimage. 2005;  28 940-946
  • 11 Fregni F, Boggio PS, Mansur CG. et al . Transcranial direct current stimulation of the unaffected hemisphere in stroke patients.  Neuroreport. 2005;  16 1551-1555
  • 12 Fregni F, Boggio PS, Valle AC. et al . A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients.  Stroke. 2006;  37 2115-2122
  • 13 Fridman EA, Hanakawa T, Chung M. et al . Reorganization of the human ipsilesional premotor cortex after stroke.  Brain. 2004;  127 747-758
  • 14 Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation.  Clin Neurophysiol. 2006;  117 845-850
  • 15 Hallett M. Transcranial magnetic stimulation and the human brain.  Nature. 2000;  406 147-150
  • 16 Huang CC, Su TP, Wei IH. Repetitive transcranial magnetic stimulation for treating medication-resistant depression in Taiwan: a preliminary study.  J Chin Med Assoc. 2005;  68 210-215
  • 17 Hummel F, Celnik P, Giraux P. et al . Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.  Brain. 2005;  128 490-499
  • 18 Hummel F, Cohen LG. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke.  Neurorehabil Neural Repair. 2005a;  19 14-19
  • 19 Hummel F, Floel A, Celnik P. et al . Effects of modulation of interhemispheric inhibition on motor function after chronic stroke.  submitted.
  • 20 Hummel F, Steven B, Hoppe J. et al . Deficient intracortical inhibition (SICI) during movement preparation after chronic stroke.  Neurology. ;  72 ((20)) 1766-1772
  • 21 Hummel F, Voller B, Celnik P. et al . Effects of brain polarization on reaction times and pinch force in chronic stroke.  BMC Neurosci. 2006;  7: 73
  • 22 Hummel FC, Celnik P, Pascual-Leone A. et al . Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients.  Brain Stimulation. 2008;  1 370-382
  • 23 Hummel FC, Cohen LG. Drivers of brain plasticity.  Curr Opin Neurol. 2005b;  18 667-674
  • 24 Hummel FC, Cohen LG. Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?.  Lancet Neurol. 2006;  5 708-712
  • 25 Hummel FC, Heise K, Celnik P. et al . Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex.  Neurobiol Aging. 2009;  , [Epub ahead of print]
  • 26 Iyer MB, Mattu U, Grafman J. et al . Safety and cognitive effect of frontal DC brain polarization in healthy individuals.  Neurology. 2005;  64 872-875
  • 27 Johansen-Berg H, Rushworth MF, Bogdanovic MD. et al . The role of ipsilateral premotor cortex in hand movement after stroke.  Proc Natl Acad Sci U S A. 2002;  99 14518-14523
  • 28 Khedr EM, Ahmed MA, Fathy N. et al . Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke.  Neurology. 2005;  65 466-468
  • 29 Kim YH, You SH, Ko MH. et al . Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke.  Stroke. 2006;  37 1471-1476
  • 30 Kleim JA, Bruneau R, VandenBerg P. et al . Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult.  Neurol Res. 2003;  25 789-793
  • 31 Kobayashi M, Hutchinson S, Theoret H. et al . Repetitive TMS of the motor cortex improves ipsilateral sequential simple finger movements.  Neurology. 2004;  62 91-98
  • 32 Kolominsky-Rabas PL, Heuschmann PU. Incidence, etiology and long-term prognosis of stroke].  Fortschr Neurol Psychiatr. 2002;  70 657-662
  • 33 Kolominsky-Rabas PL, Heuschmann PU, Marschall D. et al . Lifetime cost of ischemic stroke in Germany: results and national projections from a population-based stroke registry: the Erlangen Stroke Project.  Stroke. 2006;  37 1179-1183
  • 34 Kolominsky-Rabas PL, Weber M, Gefeller O. et al . Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study.  Stroke. 2001;  32 2735-2740
  • 35 Lai SM, Studenski S, Duncan PW. et al . Persisting consequences of stroke measured by the Stroke Impact Scale.  Stroke. 2002;  33 1840-1844
  • 36 Liebetanz D, Nitsche MA, Tergau F. et al . Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability.  Brain. 2002;  125 2238-2247
  • 37 Liepert J, Hamzei F, Weiller C. Motor cortex disinhibition of the unaffected hemisphere after acute stroke.  Muscle Nerve. 2000;  23 1761-1763
  • 38 Lotze M, Markert J, Sauseng P. et al . The role of multiple contralesional motor areas for complex hand movements after internal capsular lesion.  J Neurosci. 2006;  26 6096-6102
  • 39 Manganotti P, Acler M, Zanette G. et al . Motor Cortical Disinhibition During Early and Late Recovery After Stroke.  Neurorehabil Neural Repair. 2008; 
  • 40 Mansur CG, Fregni F, Boggio PS. et al . A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients.  Neurology. 2005;  64 1802-1804
  • 41 Murase N, Duque J, Mazzocchio R. et al . Influence of interhemispheric interactions on motor function in chronic stroke.  Ann Neurol. 2004;  55 400-409
  • 42 Nitsche MA, Cohen LG, Wassermann E. et al . Transcranial direct current stimulation: state of the art 2008.  Brain Stimulation. 2008;  1 206-223
  • 43 Nitsche MA, Liebetanz D, Antal A. et al . Modulation of cortical excitability by weak direct current stimulation--technical, safety and functional aspects.  Suppl Clin Neurophysiol. 2003;  56 255-276
  • 44 Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.  J Physiol. 2000;  3 (527 Pt) 633-9
  • 45 Nitsche MA, Seeber A, Frommann K. et al . Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex.  J Physiol. 2005;  568 291-303
  • 46 Nowak DA, Grefkes C, Dafotakis M. et al . Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.  Arch Neurol. 2008;  65 741-747
  • 47 Nudo RJ. Postinfarct cortical plasticity and behavioral recovery.  Stroke. 2007;  38 840-845
  • 48 Paulus W. Transcranial direct current stimulation (tDCS).  Suppl Clin Neurophysiol. 2003;  56 249-254
  • 49 Plewnia C, Lotze M, Gerloff C. Disinhibition of the contralateral motor cortex by low-frequency rTMS.  Neuroreport. 2003;  14 609-612
  • 50 Poreisz C, Boros K, Antal A. et al . Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients.  Brain Res Bull. 2007;  72 208-214
  • 51 Schambra HM, Sawaki L, Cohen LG. Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1.  Clin Neurophysiol. 2003;  114 130-133
  • 52 Siebner HR, Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity.  Exp Brain Res. 2003;  148 1-16
  • 53 Takeuchi N, Chuma T, Matsuo Y. et al . Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke.  Stroke. 2005;  36 2681-2686
  • 54 Taub E, Uswatte G, Elbert T. New treatments in neurorehabilitation founded on basic research.  Nat Rev Neurosci. 2002;  3 228-236
  • 55 Taylor TN, Davis PH, Torner JC. et al . Lifetime cost of stroke in the United States.  Stroke. 1996;  27 1459-1466
  • 56 Teskey GC, Flynn C, Goertzen CD. et al . Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat.  Neurol Res. 2003;  25 794-800
  • 57 Vines BW, Nair DG, Schlaug G. Contralateral and ipsilateral motor effects after transcranial direct current stimulation.  Neuroreport. 2006;  17 671-674
  • 58 Ward NS, Brown MM, Thompson AJ. et al . Neural correlates of motor recovery after stroke: a longitudinal fMRI study.  Brain. 2003;  126 2476-2496
  • 59 Ward NS, Cohen LG. Mechanisms underlying recovery of motor function after stroke.  Arch Neurol. 2004;  61 1844-1848
  • 60 Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996.  Electroencephalogr Clin Neurophysiol. 1998;  108 1-16
  • 61 Wassermann EM, Grafman J. Recharging cognition with DC brain polarization.  Trends Cogn Sci. 2005;  9 503-505
  • 62 Wolf SL, Winstein CJ, Miller JP. et al . Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial.  Jama. 2006;  296 2095-2104

Korrespondenzadresse

F. C. HummelMD 

Department of Neurology

Klinik und Poliklinik für

Neurologie Universitätklinikum

University Medical Center

Hamburg-Eppendorf

Martinistr. 52

20246 Hamburg

Email: f.hummel@uke.uni-hamburg.de

    >