Synthesis 2010(5): 741-748  
DOI: 10.1055/s-0029-1218602
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

A Highly Versatile Octasubstituted Phthalocyanine Scaffold for ex post Chemical Diversification

Herwig J. Bertholda, Theo Schotten*b, Frank Hoffmanna, Joachim Thiema
a University of Hamburg, Department of Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
b CAN GmbH, Grindelallee 117, 20146 Hamburg, Germany
Fax: +49(40)428385797; e-Mail: schotten@can-hamburg.de;
Further Information

Publication History

Received 11 September 2009
Publication Date:
11 December 2009 (online)

Abstract

The TBDPS protecting group was conveniently employed for the convergent synthesis of a highly soluble, fully protected octa-peripheral (op) substituted phthalocyanine (Pc). After facile deprotection, ex post modification of this full-fledged Pc scaffold by various linkers was successfully achieved. This strategy overcomes the downsides of widely established linear convergent approaches under harsh conditions, which are not only destructive to chemically sensitive substituents, but also detrimental to rapid diversification towards Pc libraries.

    References

  • 1a Lee H, Jung J, Deno T, and Ohwa M. inventors; WO  2008,095,801.  ; Chem. Abstr. 2008, 149, 269526
  • 1b Metz T, and Schaefer W. inventors; DE  102,007,033,191.  ; Chem. Abstr. 2009, 150, 170268
  • 2a Emmelius M. Pawlowski G. Vollmann HW. Angew. Chem., Int. Ed. Engl.  1989,  28:  1445 
  • 2b Roth K. Chem. Unserer Zeit  2007,  41:  334 
  • 3a McKeown NB. Phthalocyanine Materials: Synthesis, Structure and Function   Vol. 6:  Cambridge University Press; Cambridge UK: 1998. 
  • 3b Leznoff CC. Lever ABP. Phthalocyanines: Properties and Applications   Vol. 1-4:  VCH; New York: 1989-1996. 
  • 4 Juríček M. Kouwer PHJ. Rehák J. Sly J. Rowan AE. J. Org. Chem.  2009,  74:  21 
  • 5a Savage PB. Gellman SH. J. Am. Chem. Soc.  1993,  115:  10448 
  • 5b Corey EJ. Venkateswarlu A. J. Am. Chem. Soc.  1972,  94:  6190 
  • 5c Farooq O. Synthesis  1994,  1035 
  • 5d McKillop A. Kemp D. Tetrahedron  1989,  45:  3299 
  • 5e Woehrle D. Eskes M. Shigehara K. Yamada A. Synthesis  1993,  194 
  • 6 Overman LE. Okazaki ME. Mishra P. Tetrahedron Lett.  1986,  27:  4391 
  • 7 Uchida H. Yoshiyama H. Reddy PY. Nakamura S. Toru T. Synlett  2003,  2083 
  • 8a Liu W. Jensen TJ. Fronczek FR. Hammer RP. Smith KM. Vicente MGH. J. Med. Chem.  2005,  48:  1033 
  • 8b Kobayashi T. Uyeda N. Suito E. J. Phys. Chem.  1968,  72:  2446 
  • 8c Stillman MJ. Thomson AJ. J. Chem. Soc., Faraday Trans. 2  1974,  805 
  • 9 Hassan BM. Li H. McKeown NB. J. Mater. Chem.  2000,  10:  39 
  • 10 Wang H. Sun L. Glazebnik S. Zhao K. Tetrahedron Lett.  1995,  36:  2953 
  • 11 Bock VD. Hiemstra H. Maarseveen JH. Eur. J. Org. Chem.  2006,  51 
  • 12a Bertozzi CR, Agard NJ, Prescher JA, Baskin JM, and Sletten EM. inventors; US  2009,068,738.  ; Chem. Abstr. 2009, 150, 330128
  • 12b Sletten EM. Bertozzi CR. Org. Lett.  2008,  10:  3097 
  • 14a Plusquellec D. Lefeuvre M. Tetrahedron Lett.  1987,  28:  4165 
  • 14b Lin TS. Antonini I. Cosby LA. Sartorelli AC. J. Med. Chem.  1984,  27:  813 
  • 14c Duggan ME. Imagire JS. Synthesis  1989,  131 
13

Alternatively, the axial ligand of 12 might be interpreted as H2O. However, there are two indications that the axial ligand is NH3: 1. The distance is in accordance with a typical Zn-N bond in such compounds, 2. calculation of both structural models resulted in the smaller R value for NH3.