Synlett 2009(13): 2183-2187  
DOI: 10.1055/s-0029-1217572
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Novel C-S Bond Formation Through α’,β-Elimination of tert-Butyl Sulfoxonium Ylides: A Facile Approach to Chiral Sulfoxides

Xiao-Yu Guana,b,c, Zhang-Qin Liua,b, Hao-Xi Huanga, Li-Ping Yangc, Liao Jian*a, Wen-Hao Hu*a,c
a Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. of China
e-Mail: whu@chem.ecnu.edu.cn; e-Mail: jliao10@cioc.ac.cn;
b Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. of China
c Department of Chemistry, East China Normal University, Shanghai 200062, P. R. of China
Further Information

Publication History

Received 24 March 2009
Publication Date:
16 July 2009 (online)

Abstract

Chiral sulfoxides were prepared in excellent enantio­selectivity through α′,β-elimination of the tert-butyl substituted sulf­oxonium ylide intermediates in situ generated from diazoacetates and (R)-N-tert-butylsulfinyl aldimines in the presence of a copper(I) catalyst.

    References and Notes

  • 1a Padwa A. Weingarten MD. Chem. Rev.  1996,  96:  223 
  • 1b Doyle MP. Mckervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds   John Wiley and Sons; New York: 1998. 
  • 1c Padwa A. Hornbuckle SF. Chem. Rev.  1991,  91:  263 
  • For examples of [1,2]-Stevens rearrangement of sulfonium ylides derived from metal carbenoids, see:
  • 2a Kametani T. Yukawa H. Honda T. J. Chem. Soc., Chem. Commun.  1986,  651 
  • 2b Kim G. Kang S. Kim SN. Tetrahedron Lett.  1993,  34:  7627 
  • 2c Moody CJ. Taylor RJ. Tetrahedron Lett.  1988,  29:  6005 
  • For examples of [2,3]-sigmatropic rearrangement of ammonium ylides derived from metal carbenoids, see:
  • 3a Ma M. Peng LL. Li CK. Zhang X. Wang JB.
    J. Am. Chem. Soc.  2005,  127:  15016 
  • 3b Doyle MP. Tamblyn WH. Bagbers V. J. Org. Chem.  1981,  46:  5094 
  • 3c Vedejs E. Hagen JP. J. Am. Chem. Soc.  1975,  97:  6878 
  • 3d Doyle MP. Griffin JH. Chinn MS. Leusen D. J. Org. Chem.  1981,  46:  5094 
  • 4a Aggarwal V. Richardson J. In Science of Synthesis   Vol. 27:  Padwa A. Thieme; Stuttgart: 2004.  p.21 
  • 4b Jennifer MS. Veera RP. Babak B. J. Am. Chem. Soc.  2004,  126:  13600 
  • 4c Gololobov YG. Nesmeyanov AN. Lysenko VP. Boldeskul IE. Tetrahedron  1987,  43:  2609 
  • 4d Corey EJ. Chaykovsky M. J. Am. Chem. Soc.  1965,  87:  1353 
  • 5 Ando W. Yagihara T. Kondo S. Nakayama K. YamatoH . Nakaido S. Migita T. J. Org. Chem.  1971,  36:  1732 
  • 6a Ando W. Acc. Chem. Res.  1977,  10:  179 
  • 6b Diekmann J. J. Org. Chem.  1965,  30:  2272 
  • 6c Takebayashi M. Kashiwada T. Hamaguchi M. Ibata T. Chem. Lett.  1973,  809 
  • 6d Corey EJ. Chaykovsky M. Tetrahedron Lett.  1963,  169 
  • 6e Corey EJ. Chaykovsky M. J. Am. Chem. Soc.  1964,  86:  1640 
  • 6f Gololobou YG. Nesmeyanov AN. Lysenko VP. Boldeskul IE. Tetrahedron  1987,  43:  2609 
  • 6g Oda R. Mieno M. Hayashi Y. Tetrahedron Lett.  1967,  2363 
  • 6h Soysa HSD. Weber WP. Tetrahedron Lett.  1978,  1969 
  • 7 Dyer JC. Evans SA. J. Org. Chem.  1980,  45:  5350 
  • 8a Dost F. Gosselck J. Chem. Ber.  1972,  105:  948 
  • 8b Dost F. Gosselck J. Tetrahedron Lett.  1970,  5091 
  • 9 Ando W. Yagihara T. Tozune S. Nakaido S. Migita T. Tetrahedron Lett.  1969,  1979 
  • 10 Dost F. Gosselck J. Tetrahedron Lett.  1970,  5091 
  • 11 Moody CJ. Slawin AM. Taylor RJ. Williams DJ. Tetrahedron Lett.  1988,  6009 
  • 12a Ronan B. Marchalin S. Samuel O. Kagan HB. Tetrahedron Lett.  1988,  29:  6101 
  • 12b Sivakumar AV. Babu GS. Bhat SV. Tetrahedron: Asymmetry  2001,  12:  1095 
  • 12c Nagao Y. Miyamoto S. Miyamoto M. Takeshige H. Hayashi K. Sano S. Shiro M. Yamaguchi K. Sei Y. J. Am. Chem. Soc.  2006,  128:  9722 
  • 12d Shibata N. Matsugi M. Kawano N. Fukui S. Fujimori C. Gotanda K. Murata K. Kita Y. Tetrahedron: Asymmetry  1997,  8:  303 
  • 12e Tang J. Brackenridge I. Roberts SM. Beecher J. Willetts AJ. Tetrahedron  1995,  51:  13217 
  • 12f Kita Y. Shibata N. Yoshida N. Fujita S. J. Chem. Soc., Perkin Trans. 1  1994,  22:  3335 
  • 12g Beecher J. Brackenridge I. Roberts SM. Tang J. Willetts AJ. J. Chem. Soc., Perkin Trans. 1  1995,  1641 
  • 13a Raghavan S. Rajender A. Tetrahedron  2004,  60:  5059 
  • 13b Guanti G. Banfi L. Narisano E. Thea S. J. Chem. Soc., Chem. Commun.  1984,  13:  861 
  • 13c Magnus P. Brown P. J. Chem. Soc., Chem. Commun.  1985,  184 
  • 13d Magnus P. Giles M. Bonnet R. Johnson G. McQuire L. Deluca M. Merritt A. Kim CS. Vicker N. J. Am. Chem. Soc.  1993,  115:  8116 
  • 13e Magnus P. Gallagher T. Brown P. Huffman JC. J. Am. Chem. Soc.  1984,  106:  2105 
  • 13f Garcia R. Jose L. Tito A. Peromingo MT. J. Org. Chem.  2002,  67:  981 
  • 13g Zhang Q. Wu YK. Tetrahedron  2007,  63:  10189 
14

Typical Procedure for the Synthesis of Compounds 2 and 3 To a refluxing CH2Cl2 (3 mL) solution of Rh2(OAc)4 (2.6 mg, 3 mol%), (R)-(tert-butylsulfinyl)benzene [(R)-1a, 36.4 mg, 0.2 mmol] was added ethyl diazoacetate (68.4 mg, 0.6 mmol) in CH2Cl2 (3 mL) over 1 h via a syringe pump. After the addition was completed, the reaction mixture was cooled to r.t. Solvent was removed, and the crude product was purified by a flash column chromatography on silica gel eluting with 20% EtOAc-light PE to give (S)-2a (18 mg) in 43% yield.

15

Analytical Data of ( S )-Ethyl 2-(Phenylsulfinyl)acetate [( S )-2a] TLC: R f  = 0.15 (PE-EtOAc, 5:1); [α]D ²0 -131 (c 1, EtOAc); 90% ee, determined by HPLC [Daicel Chiralpak AD-H, flow rate 0.4 mL/min, hexane-2-PrOH = 90:10, 254 nm; t R(major) = 37.2 min and t R(minor) = 40.0 min]. ¹H NMR (300 MHz, CDCl3): δ = 1.20 (t, J = 7.1 Hz, 3 H), 3.68 (d, J = 13.6 Hz, 1 H), 3.87 (d, J = 13.6 Hz, 1 H), 4.16 (q, J = 7.1 Hz, 2 H), 7.52-7.70 (m, 5 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 13.98, 61.70, 62.01, 124.17, 129.36, 131.75, 143.07, 164.68 ppm. HRMS (EI): m/z calcd for C10H12NaO3S [M + Na]+: 235.0405; found: 235.0399.

16

Analytical Data of ( S )-Ethyl 2-(Phenylsulfinyl)acetate [( S )-2b]
TLC: R f  = 0.13 (PE-EtOAc, 5:1); [α]D ²0 -120 (c 1, EtOAc); 99% ee, determined by HPLC [Daicel Chiralpak AD-H, flow rate 0.4 mL/min, hexane-2-PrOH = 90:10, 254 nm, t R(major) = 42.35 min and t R(minor) = 45.58 min]. ¹H NMR (300 MHz, CDCl3): δ = 1.26 (t, J = 7.2 Hz, 3 H), 3.67 (d, J = 13.5 Hz, 1 H), 3.85 (d, J = 10.8 Hz, 1 H), 3.86 (s, 3 H), 4.21 (q, J = 7.1 Hz, 2 H), 7.03-7.20 (m, 4 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 14.02, 55.60, 61.90, 62.04, 108.41, 116.18, 118.23, 130.31, 144.61, 160.53, 164.73 ppm. HRMS (EI): m/z calcd for C11H14NaO4S [M + Na]+: 265.0510; found: 265.0505.

17

Analytical Data of ( R , S )-Ethyl 2-(Phenylsulfinyl)acetate [( R , S )-3] TLC: R f  = 0.26 (PE-EtOAc, 5:1); [α]D ²0 -110 (c 1, EtOAc); 97.5% ee, determined by HPLC [Daicel Chiralpak AD-H, flow rate 0.4 mL/min, hexane-2-PrOH = 90:10, 254 nm; t R(major) = 44.7 min and t R(minor) = 50.9 min]. ¹H NMR (300 MHz, CDCl3): δ = 3.84 (s, 3 H), 4.55 (s, 1 H), 3.87 (d, J = 13.6 Hz, 1 H), 4.16 (q, J = 7.1 Hz, 2 H), 7.04-7.49 (m, 10 H). ¹³C NMR (75 MHz, CDCl3): δ = 61.70, 78.02, 125.19, 128.50, 128.57, 129.22, 129.37, 129.94, 131.70, 141.18, 168.01 ppm. HRMS (EI): m/z calcd for C15H14NaO3S [M + Na]+: 297.0561; found: 297.0556.

18

Typical Procedure for the Synthesis of Compounds 5 and 6 To a refluxing CH2Cl2 (3 mL) solution of CuPF6 (MeCN)4 (2.2 mg, 3 mol%), (S)-N-(4-nitrobenzylidene)-2-methyl-propane-2-sulfinamide (4c, 50.8 mg, 0.2 mmol) was added ethyl diazoacetate (68.4 mg, 0.6 mmol) in CH2Cl2 (3 mL) over 1 h via a syringe pump. After the addition was completed, the reaction mixture was cooled to r.t. Solvent was removed, and the crude product was purified by a flash column chromatography on silica gel eluting with 20% EtOAc-light PE to give (R)-5c (24 mg) in 42% yield.

19

Analytical Data of ( R )- N -(4-Nitrobenzylidene)-2-ethoxy-2-oxomethanesulfinamide [( R ) - 5c] TLC: R f  = 0.12 (PE-EtOAc, 5:1); [α]D ²0 +84.5 (c 1, EtOAc); 100% ee, determined by HPLC [Daicel Chiralpak AS, flow rate 0.6 mL/min, hexane-2-PrOH = 100:30, 254 nm; t R(major) = 25.72 min and t R(minor) = 19.09 min]. ¹H NMR (300 MHz, CDCl3): δ = 1.30 (t, J = 7.1 Hz, 3 H), 3.76 (d, J = 13.6 Hz, 1 H), 3.90 (d, J = 13.6 Hz, 1 H), 4.31 (q, J = 7.1 Hz, 2 H), 8.05 (d, J = 8.8 Hz, 2 H), 8.36 (d, J = 8.8 Hz, 2 H), 8.76 (s, 1 H) ppm. ¹³C NMR (75 MHz, CDCl3): δ = 14.15, 59.98, 62.24, 124.26, 130.39, 132.32, 138.32, 161.13, 164.06 ppm. HRMS (EI): m/z calcd C11H12N2NaO5S [M + Na]+: 307.0365; found: 307.0359.

20

Crystal Structure Data for ( R , R )- N -(4-Nitrobenzylidene)-2-ethoxy-2-oxomethane-1-benzylsulfinamide [(R , R )-6a] C16H14N2O5S, Mw = 346.35, light yellow, orthorhombic, P2, a = 5.70380 (10), b = 8.2382 (2), c = 34.4784 (8) Å, α = 90.00, β = 90.00, γ = 90.00, V = 1620.11 (6) ų, Z = 4, T = 296 (2) K, ρ calcd = 1.420 Mg˙m, F(000) = 720, λ = 0.71073 Å, µ = 0.229 mm, R(F) = 0.0299 and wR(F)2 = 0.0792 for 2722 observed reflections, I > 2σ, 2.36˚ < q < 24.99˚. CCDC 722774 contains the supplementary crystallographic data for this paper.
These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax +44 (1223)336033; or deposit@ ccdc.cam.ac.uk].