Horm Metab Res 2009; 41(8): 621-625
DOI: 10.1055/s-0029-1215591
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Hormones in the Nucleus of Mast Cells: Confocal Microscopic Immunocytochemical Observations

G. Csaba 1 , P. Kovács 1
  • 1Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
Further Information

Publication History

received 06.01.2009

accepted 16.02.2009

Publication Date:
15 April 2009 (online)

Abstract

In earlier experiments, the presence of histamine and serotonin in the nucleus of mast cells was demonstrated. At present we studied the presence or absence of four hormones: adrenocorticotropine (ACTH), growth hormone (GH), triiodothyronine (T3), and progesterone. Cells of the (adult female) rat peritoneal fluid were fixed by EDAC and studied by laser-scanning confocal microscope, after treatment with primary antibodies and FITC-labeled secondary antibody. Strong ACTH and growth hormone fluorescence can be seen in the nucleus. ACTH fluorescence is present also in the granules. The cytoplasm of lymphocytes contains both ACTH and GH. T3 shows very pale fluorescence, and progesterone is negative. The conclusion is that the nucleus of mast cells contains two polypeptide hormones studied. This was demonstrated by using EDAC fixation as this is a cross-linking agent and does not allow the escape of the minute amounts of hormones from the nucleus. Earlier observations on peptide hormones’ nuclear presence and their importance are discussed.

References

  • 1 Blalock JE. Endorphin in immune cells.  Immunol Today. 1998;  19 191-192
  • 2 Panerai AE, Sacerdote P. β Endorphin in immune system: a role at last.  Immunol Today. 1997;  18 317-319
  • 3 Csaba G, Pállinger É. β Endorphin in granulocytes.  Cell Biol Int. 2002;  26 741-743
  • 4 Csaba G, Kovács P, Pállinger É. Immunologically demonstrable hormone-like molecules (triiodothyronine, insulin, digoxin) in rat white blood cells and mast cells.  Cell Biol Int. 2004;  28 487-490
  • 5 Kvetnoy IM, Polyakova VO, Trofimov AV, Yuzhakov VV, Yarlin AA, Kurilets ES, Mikhina LN, Sharova NI, Nikonova MF. Hormonal function and proliferative activity of thymic cells in humans: immunocytochemical correlations.  Neuro Endocrinol Lett. 2003;  24 263-268
  • 6 Mossner R, Lesch KP. Role of serotonin in the immune system and in neuroimmune interactions.  Brain Behav Immun. 1998;  12 249-271
  • 7 Falus A. Histamine: biology and medical aspects. Basel: Karger 2004
  • 8 Csaba G, Kovács P, Pállinger É. Effect of the inhibition of triiodothyronine (T3) production by thiamazole on the T3 and serotonin content of immune cells.  Life Sci. 2005;  76 2043-2052
  • 9 Bachman SE, Mashaly MM. Relationship between circulating thyroid hormones and cell mediated immunity in immature male chickens.  Dev Comp Immunol. 1987;  11 203-213
  • 10 Johnson BE, Marsh JA, King DB, Lillehoj HS, Scanes CG. Effect of triiodothyronine on the expression of T cell markers and immune function of thyroidectomized White Leghorn chickens.  Proc Soc Exp Biol Med. 1992;  199 104-113
  • 11 Vafiadis P, Bennett ST, Todd JA, Grabs R, Goodyear CG, Wickramasinghe S, Colle E, Polychronakos C. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus.  Nature Gen. 1997;  15 289-292
  • 12 Chentoufi AA, Polychronakos C. Insulin expression levels in the thymus modulate insulin-specific autoreactive T-cell tolerance: the mechanism by which the IDDM2 locus may predispose to diabetes.  Diabetes. 2002;  51 131-139
  • 13 Hendricks  3rd  GL, Mashaly MM, Siegel HS. Effects of corticosterone in vivo and in vitro on adrenocorticotropic hormone production by corticotropin releasing factor-stimulated leukocytes.  Proc Soc Exp Biol Med. 1995;  209 382-386
  • 14 Csaba G, Pállinger É. In vitro effect of hormones on the hormone content of rat peritoneal and thymic cells. Is there an endocrine network inside the immune system?.  Inflamm Res. 2007;  56 447-451
  • 15 Kelley KW, Weigent DA, Kooijman R. Protein hormones and immunity.  Brain Behav Immun. 2007;  21 384-392
  • 16 Phatsara C, Jonas E, Yammuen-art S, Bushbell H, Tesfaye D, Ponsuksili S, Tholen E, Juengst H, Shellander K, Wimmers K. Physiological interactions between the endocrine and immune system shown in gene analysis in pigs.  Dev Biol. 2008;  132 161-167
  • 17 Luna M, Rodriguez-Méndez AJ, Berumen L, Carranza M, Riesgo-Escovar J, Baudet ML, Harvey S, Atrámburo C. Immune growth hormone (GH): Localization of GH and GH mRNA in the bursa of Fabricius.  Dev Comp Immunol. 2008;  32 1313-1325
  • 18 Dorsam G, Voice J, Kong Y, Goetzl EJ. Vasoactive intestinal peptide mediation of development and functions of T lymphocytes.  Ann N Y Acad Sci. 2000;  921 79-91
  • 19 Gomariz RP, Juarranz Y, Abad C, Arranz A, Leceta J, Martinez C. VIP-PACAP system in immunity: new insight for multitarget therapy.  Ann N Y Acad Sci. 2006;  1070 51-74
  • 20 Blalock JE, Harbour-McMenamin D, Smith EM. Peptide hormones shared by the neuroendocrine and immunologic system.  J Immunol. 1985;  135 858-865
  • 21 Blalock JE. Proopiomelanocortin and the immune-neuroendocrine connection.  Ann N Y Acad Sci. 1999;  885 161-172
  • 22 Csaba G, Kovács P, Pállinger É. In vitro effect of biogenic amines on the hormone content of immune cells of the peritoneal fluid and thymus. Is there a hormonal network inside the immune system?.  Cell Biol Int. 2007;  31 224-228
  • 23 Csaba G, Kovács P, Pállinger É. Hormones in the nucleus. Immunologically demonstrable biogenic amines (serotonin, histamine) in the nucleus of rat peritoneal mast cells.  Life Sci. 2006;  78 1871-1877
  • 24 Csaba G, Kovács P, Buzás E, Mazán M, Pállinger É. Serotonin content is elevated in the immune cells of histidine decarboxylase gene knock-out (HDCKO) mice. Focus on mast cells.  Inflamm Res. 2007;  56 89-92
  • 25 Eriksson KS, Peitsaro N, Karlstedt K, Kaslin J, Panula P. Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems.  Eur J Neurosci. 1998;  10 3799-3812
  • 26 Panula P, Happola O, Airaksinen MS, Auvinen S, Virkamaki A. Carbodiimide as a tissue in histamine immunohistochemistry and its application in developmental neurobiology.  J Histochem Cytochem. 1988;  36 259-269
  • 27 Csaba G, Kovács P, Pállinger É. Influence of paraformaldehyde and EDAC fixation on the demonstrability of hormones (histamine, endorphin, triiodothyronine) in rat immune cells: an immunocytochemical comparative analysis.  Cell Biol Int. 2006;  30 412-415
  • 28 Csaba G, Pállinger É. Gender differences in the hormone content of the immune cells.  Acta Physiol Hung. 2009;  96 45-50
  • 29 Csaba G, Kovács P, Buzás E, Mazán M, Pállinger É. Histidine decarboxylase (HDC) knock out mouse immune cells have altered expression of ACTH, triiodothyronine and endorphin.  Inflamm Res. 2007;  56 428-431
  • 30 Henderson JE, Amizuka N, Warshawsky H, Biasotto D, Lanske BM, Goltzman D, Kraplis AC. Nucleolar localization of parathyroid hormone-related peptide enhances survival of chondrocytes under conditions that promote apoptotic cell death.  Mol Cell Biol. 1995;  15 4064-4075
  • 31 Robertson  Jr  AL, Khairallah PA. Angiotensin II: rapid localization in nuclei of smooth and cardiac muscle.  Science. 1971;  172 1138-1139
  • 32 Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited.  Intern Med. 2008;  264 224-236
  • 33 Sherrod M, Liu X, Zhang X, Sigmund CD. Nuclear localization of angiotensinogen in astrocytes.  Am J Physiol Regul Integr Comp Physiol. 2005;  288 R539-R546
  • 34 Singh VP, Lee B, Bhat VB, Baker KM, Kumar R. High-glucose-induced regulation of intracellular ANG II synthesis and nuclear redistribution in cardiac myocytes.  Am J Physiol Heart Circ Physiol. 2007;  293 H939-H948
  • 35 van Woudenberg AD, Metzelaar MJ, van der Kleij AA, de Wied D, Burbach JP, Wiegant VM. Analysis of proopiomelanocortin (POMC) messenger ribonucleic acid and POMC-derived peptides in human peripheral blood mononuclear cells: no evidence for a lymphocyte-derived POMC system.  Endocrinology. 1993;  133 1922-1933
  • 36 Horny HP, Reimann O, Kaiserling E. Immunoreactivity of normal and neoplastic human tissue mast cells.  Am J Clin Pathol. 1988;  89 335-340
  • 37 Weicker H, Werle E. Interaction between hormones and the immune system.  Int J Sports Med. 1991;  12 S30-S37
  • 38 Umarova BA, Kopylova GN, Smirnova EA, Guseva AA, Zhuikova SE. Secretory activity of mast cell during stress: effect of prolyl-glycyl-proline and Semax.  Bull Exp Biol Med. 2003;  136 325-327
  • 39 Pignatelli D, Magelhaes MM, Magelhaes MC. Direct effect of stress on adrenocortical function.  Horm Metab Res. 1998;  30 464-474
  • 40 Pállinger É, Csaba G. A hormone map of human immune cells showing the presence of adrenocorticotropic hormone, triiodothyronine and endorphin in immunophenotyped white blood cells.  Immunology. 2008;  123 584-589
  • 41 Meazza C, Pagani S, Travaglino P, Bozzola M. Effect of growth hormone (GH) on the immune system.  Pediatr Endocrinol Rev. 2004;  1 ((Suppl 3)) 490-495
  • 42 Leb CR, Hu F-Y, Murphy BEP. Metabolism of progesterone by human lymphocytes production of neuroactive steroids.  J Clin Endocrinol Metab. 1997;  82 4064-4068
  • 43 Conway-Campbell BL, Wooh JW, Brooks AJ, Gordon D, Brown RJ, Lichanska AM, Chin HS, Barton CL, Boyle GM, Parsons PG, Jans DA, Waters MJ. Nuclear targeting of the growth hormone receptor results in dysregulation of cell proliferation and tumorigenesis.  Proc Natl Acad Sci USA. 2007;  104 13331-13336

Correspondence

G. Csaba

Department of Genetics

Cell and Immunobiology

Semmelweis University

Budapest

Hungary

Phone: +36/1/210 29 50

Fax: +36/1/210 29 50

Email: csagyor@dgci.sote.hu

    >