Subscribe to RSS
DOI: 10.1055/s-0028-1128142
© Georg Thieme Verlag KG Stuttgart · New York
Improvement of Insulin Sensitivity by a Novel Drug, BGP-15, in Insulin-resistant Patients: A Proof of Concept Randomized Double-blind Clinical Trial
Publication History
received 10.09.2008
accepted 10.12.2008
Publication Date:
12 February 2009 (online)

Abstract
The efficacy and safety of the new drug, BGP-15, were compared with placebo in insulin-resistant patients in a 28-day dose-ranging study. Forty-seven nondiabetic patients with impaired glucose tolerance were randomly assigned to 4 weeks of treatment with 200 or 400 mg of BGP-15 or placebo. Insulin resistance was determined by hyperinsulinemic euglycemic clamp technique and homeostasis model assessment method, and β-cell function was measured by intravenous glucose tolerance test. Each BGP-15 dose significantly increased whole body insulin sensitivity (M-1, p=0.032), total body glucose utilization (M-2, p=0.035), muscle tissue glucose utilization (M-3, p=0.040), and fat-free body mass glucose utilization (M-4, p=0.038) compared to baseline and placebo. No adverse drug effects were observed during treatment. BGP-15 at 200 or 400 mg significantly improved insulin sensitivity in insulin-resistant, nondiabetic patients during treatment compared to placebo and was safe and well-tolerated. This was the first clinical study demonstrating the insulin-sensitizing effect of a molecule, which is considered as a co-inducer of heat shock proteins.
Key words
BGP-15 - insulin resistance - heat shock protein inducer - hyperinsulinemic euglycemic clamp - glucose utilization
References
- 1
DeFronzo RA.
The triumvirate: β-cell, muscle, liver.
A collusion responsible for NIDDM. Diabetes.
1988;
37
667-687
MissingFormLabel
- 2
Hollenberg NK.
Considerations for management of fluid dynamic issues associated with thiazolidinediones.
Am J Med.
2003;
8
((Suppl 8A))
111S-115S
MissingFormLabel
- 3
Nissen SE, Wolski K.
Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular
causes.
N Engl J Med.
2007;
356
2457-2471
MissingFormLabel
- 4
Racz I, Tory K, Gallyas Jr F, Berente Z, Osz E, Jaszlits L, Bernath S, Sumegi B, Rabloczky G, Literati-Nagy P.
BGP-15 – a novel poly(ADP-ribose) polymerase inhibitor – protects against nephrotoxicity
of cisplatin without compromising its antitumor activity.
Biochem Pharmacol.
2002;
63
1099-1111
MissingFormLabel
- 5
Chen JD, Evans RM.
A transcriptional co-repressor that interacts with nuclear hormone receptors.
Nature.
1995;
377
454-457
MissingFormLabel
- 6
Nagy L, Kao HY, Love JD, Li C, Banayo E, Gooch JT, Krishna V, Chatterjee K, Evans RM, Schwabe JW.
Mechanism of corepressor binding and release from nuclear hormone receptors.
Genes Dev.
1999;
13
3209-3216
MissingFormLabel
- 7
Chung J, Nguyen AK, Henstridge DC, Holmes AG, Chan MH, Mesa JL, Lancaster GI, Southgate RJ, Bruce CR, Duffy SJ, Horvath I, Mestril R, Watt MJ, Hooper PL, Kingwell BA, Vigh L, Hevener A, Febbraio MA.
HSP72 protects against obesity-induced insulin resistance.
Proc Natl Acad Sci USA.
2008;
105
1739-1744
MissingFormLabel
- 8
Kolonics A, Literati-Nagy P, Peitl B, Bajza A, Jaszlits L, Laszlo L, Horvath T, Kulcsar E, Porszasz R, Paragh G, Bernath S, Literati B, Koranyi L, Szilvassy Z, Tory K, Roth J.
BGP-15, a new type of insulin sensitizer.
Diabetes.
2006;
55
((Suppl 1))
2091-PO
MissingFormLabel
- 9
Expert Commitee on the Diagnosis and Classification of Diabetes Mellitus
.
Position Statment.
Diabetes Care.
2003;
26
3160-3167
MissingFormLabel
- 10
Haffner SM, Miettinen H, Stern MP.
The homeostasis model in the San Antonio Heart Study.
Diabetes Care.
1997;
20
1087-1092
MissingFormLabel
- 11
DeFronzo RA, Tobin JD, Andres R.
Glucose clamp technique: a method for quantifying insulin secretion and resistance.
Am J Physiol.
1979;
237
E214-E223
MissingFormLabel
- 12
Gillies CL, Abrams KR, Lambert PC, Cooper NJ, Sutton AJ, Hsu RT, Khunti K.
Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in
people with impaired glucose tolerance: systematic review and meta-analysis.
BMJ.
2007;
10
299
MissingFormLabel
- 13
The Diabetes Prevention Program Research Group
.
Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk
factors in the Diabetes Prevention Program.
Diabetes Care.
2005;
28
888-894
MissingFormLabel
- 14
American Diabetes Association
.
Standards of Medical Care in Diabetes.
Diabetes Care.
2005;
28
((Suppl 1))
S4-S36
MissingFormLabel
- 15
Ou H-Y, Cheng J-T, Yu E-H, Wu T-H.
Metformin on insulin sensitivity and plasma β-endorphin in human subjects.
Horm Metab Res.
2006;
38
106-111
MissingFormLabel
- 16
Nissen SE, Wolski K, Topol EJ.
Effect of muraglitazar on death and major adverse cardiovascular events in patients
with type 2 diabetes mellitus.
JAMA.
2005;
294
2581-2586
MissingFormLabel
- 17
Watkins PB.
Insight into hepatotoxicity: the troglitazone experience.
Hepatology.
2005;
41
229-230
MissingFormLabel
- 18
Hampton T.
Diabetes drugs tied to fractures in women.
JAMA.
2007;
297
1645
MissingFormLabel
- 19
Jessen N, Selmer E, Buhl R, Pold O, Schmitz S, Lund.
A novel insulin sensitizer (S15511) enhances insulinstimulated glucose uptake in rat
skeletal muscles.
Horm Metab Res.
2008;
40
269-275
MissingFormLabel
- 20
Hargitai J, Lewis H, Boros I, Rácz T, Fiser A, Kurucz I, Benjamin I, Vígh L, Pénzes Z, Csermely P, Latchman DS.
Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat
shock factor-1.
Biochem Biophys Res Commun.
2003;
307
689-695
MissingFormLabel
- 21
Vígh L, Literáti PN, Horváth I, Török Z, Balogh G, Glatz A, Kovács E, Boros I, Ferdinándy P, Farkas B, Jaszlits L, Jednákovits A, Korányi L, Maresca B.
Bimoclomol: a nontoxic, hydroxylamine derivative with stress proteininducing activity
and cytoprotective effects.
Nat Med.
1997;
3
1150-1154
MissingFormLabel
- 22
Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L.
Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression
in ALS mice.
Nat Med.
2004;
10
402-405
MissingFormLabel
- 23
MacCarty MF.
Induction of heat shock proteins may combat insulin resistance.
Med. Hypotheses.
2006;
66
527-534
MissingFormLabel
- 24
Kolonics A, László L, Ábrahám CsS, Literáti PN, Tory K.
BGP-15, a hydroximic acid derivative induces HSP72, activates neuronal NOS and preserves
mitochondria number in hyperglycemic rat brain endothelial cell models.
Fundam Clin Pharmacol.
2004;
18
((Suppl 1))
23-126
, P11.34
MissingFormLabel
- 25
Patti ME, Butte A, Cusi K, Kohane I, Landaker EJ, Defronzo R, Mandarino LJ, Kahn CR.
Analysis of differential gene expression in skeletal muscle from subjects with insulin
resistance and type 2 diabetes.
Diabetes.
2001;
50
((Suppl 2))
A247
MissingFormLabel
- 26
Kurucz I, Morva A, Vaag A, Eriksson KF, Huang X, Groop L, Koranyi L.
Decreased expression of heat shock protein 72 in skeletal muscle of patients with
type 2 diabetes correlates with insulin resistance.
Diabetes.
2002;
51
1102-1109
MissingFormLabel
- 27
Soti C, Nagy E, Giricz Z, Vigh L, Csermely P, Ferdinandy P.
Heat shock proteins as emerging therapeutic targets.
Br J Pharmacol.
2005;
146
769
MissingFormLabel
- 28
Bruce CR, Carey AL, Hawley JA, Febbraio MA.
Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients
with type 2 diabetes.
Diabetes.
2003;
52
2338-2345
MissingFormLabel
- 29
Sadri P, Lautt WW.
Blockade of hepatic nitric oxide synthase causes insulin resistance.
Am J Physiol.
1999;
277
G101-G108
MissingFormLabel
- 30
Shankar RR, Wu Y, Shen HQ, Zhu JS, Baron AD.
Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit
insulin resistance.
Diabetes.
2000;
49
684-687
MissingFormLabel
- 31
Kashyap SR, Roman LJ, Lamont J, Masters BS, Bajaj M, Suraamornkul S, Belfort R, Berria R, Kellogg Jr DL, Liu Y, DeFronzo RA.
Insulin resistance is associated with impaired nitric oxide synthase (NOS) activity
in skeletal muscle of type 2 diabetic subjects.
J Clin Endocrinol Metab.
2005;
90
1100-1105
MissingFormLabel
- 32
Park HS, Lee JS, Huh SH, Seo JS, Choi EJ.
Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase.
EMBO J.
2001;
20
446-456
MissingFormLabel
- 33
Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS.
A central role for JNK in obesity and insulin resistance.
Nature.
2002;
420
333-336
MissingFormLabel
- 34
Kolonics A, Horváth T, Kiss E, Matkó J, Kulcsár E, Literáti NP, Literáti NB, Barta K, Korányi LI, Tory K.
Mitochondrial status of lymphocytes shows correlation with metabolic state.
Diabetes.
2006;
55
((Suppl 1))
602-60P
MissingFormLabel
- 35
Nedvetsky PI.
There's NO binding like NOS binding: protein-protein interactions in NO/cGMP signaling.
Proc Natl Acad Sci USA.
2002;
99
16510-16512
MissingFormLabel
- 36
Venema VJ, Marrero MB, Venema RC.
Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric
oxide synthase translocation to the cytoskeleton.
Biochem Biophys Res Commun.
1996;
226
703-710
MissingFormLabel
- 37
García-Cardeña G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC.
Dynamic activation of endothelial nitric oxide synthase by Hsp90.
Nature.
1998;
392
821-824
MissingFormLabel
- 38
Bender AT, Silverstein AM, Demady DR, Kanelakis KC, Noguchi S, Pratt WB, Osawa Y.
Neuronal nitric oxide synthase is regulated by the hsp90-based chaperone system in
vivo.
J Biol Chem.
1999;
274
1472-1478
MissingFormLabel
- 39
Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, MacCabe TJ, Sessa WC.
Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1
complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement
of eNOS from caveolin-1.
J Biol Chem.
2000;
275
22268-22272
MissingFormLabel
- 40
Fontana J, Fulton D, Chen Y, Fairchild TA, MacCabe TJ, Fujita N, Tsuruo T, Sessa WC.
Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold
to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and
NO release.
Circ Res.
2002;
90
866-873
MissingFormLabel
- 41
Brouet A, Sonveaux P, Dessy C, Balligand JL, Feron O.
Hsp90 ensures the transition from the early Ca2-dependent to the late phosphorylation-dependent
activation of the endothelial nitric-oxide synthase in vascular endothelial growth
factor-exposed endothelial cells.
J Biol Chem.
2001;
276
32663-32669
MissingFormLabel
- 42
Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY.
Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance.
J Biol Chem.
1997;
272
18033-18037
MissingFormLabel
- 43
Hooper PL, Hooper PL.
Inflammation, heat shock proteins and type 2 diabetes.
Cell Stress Chaperones.
2008;
, Aug 22 [Epub ahead of print]
MissingFormLabel
- 44
Juhl CB, Hollingdal M, Porksen N, Prange A, Lonnqvist F, Schmitz O.
Influence of rosiglitazone treatment on beta-cell function in type 2 diabetes: evidence
of an increased ability of glucose to entrain high-frequency insulin pulsatility.
J Clin Endocrinol Metab.
2003;
88
3794-3800
MissingFormLabel
- 45
Pacinic G, Mari A.
Methods for clinical assessment of insulin sensitivity and beta-cell function.
Best Pract Res Clin Endocrinol Metab.
2003;
17
305-322
, (Review)
MissingFormLabel
- 46
Fulghesu AM, Angioni S, Portoghese E, Milano F, Paletta B, Paoletti AM, Melis GB.
Failure of the homeostasis model assessment calculation score for detecting metabolic
deterioration in young patients with polycystic ovarium syndrome.
Fertil Steril.
2006;
86
398-404
MissingFormLabel
- 47
Wallace TM, Levy JC, Matthews DR.
Use and abuse of HOMA modelling.
Diabetes Care.
2004;
27
1487-1495
MissingFormLabel
Correspondence
B. Literáti-NagyMD
DRC (Drug Research Center) Ltd.
8230 Balatonfüred
Ady Endre u. 12
Hungary
Phone: +36/87/48 16 16
Fax: +36/87/58 01 16
Email: botond.literati@drc.hu