Horm Metab Res 2009; 41(4): 302-307
DOI: 10.1055/s-0028-1112125
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

N-Terminal-pro-B-type Natriuretic Peptide during Pharmacological Heart Rate Reduction in Hyperthyroidism

M. Schultz 1 , C. Kistorp 2 , P. Corell 1 , H. U. Andersen 1 , A. Jarlov 1 , J. Faber 2
  • 1Department of Cardiology and Endocrinology E, Frederiksberg University Hospital, Denmark
  • 2Department of Endocrinology J, Herlev University Hospital, Denmark
Further Information

Publication History

received 19.07.2008

accepted 24.11.2008

Publication Date:
12 January 2009 (online)

Abstract

We hypothesized that elevated N-terminal-pro-B-type natriuretic peptide levels in hyperthyroidism are mainly driven by increased metabolism due to excess thyroid hormones. Therefore, serum levels of N-terminal-pro-B-type natriuretic peptide were studied during reduced cardiac work load by means of pharmacologically induced heart rate reduction in untreated hyperthyroidism. We designed a noncontrolled interventional study. Eighteen women with newly diagnosed hyperthyroidism were evaluated (including an echocardiography) before and after pharmacological heart rate reduction with 360 mg verapamil daily for 6 days. Before treatment, N-terminal-pro-B-type natriuretic peptide was independently associated with thyroid function (free triiodothyronine-index, r=0.64, p=0.001) and the hemoglobin concentration (r=−0.36, p=0.031). The verapamil treatment induced a decrease in parameters reflecting cardiac function; resting heart rate [from mean 97 to 80 beats per min (17.5%), p<0.001] and mean arterial pressure (8.5%, p=0.001). Median N-terminal-pro-B-type natriuretic peptide increased insignificantly from 224 to 240 pg/ml (p=0.31). Thyrotrotrophin levels were totally suppressed (<0.001 mU/l), free thyroxine-index decreased from median 319 to 315 arbitrary units (p=0.039) and free triiodothyronine-index increased from 8.6 to 9.9 arbitrary units (p=0.010). No changes in echocardiographic parameters were observed. A decrease in resting heart rate in untreated hyperthyroidism due to verapamil treatment did not result in decreasing N-terminal-pro-B-type natriuretic peptide levels. Thus elevated N-terminal-pro-B-type natriuretic peptide in hyperthyroidism seems mainly a result of high metabolism due to excess thyroid hormones rather than increased cardiac work load.

References

  • 1 Cooper DS. Approach to the patient with subclinical hyperthyroidism.  J Clin Endocrinol Metab. 2007;  92 3-9
  • 2 Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system.  N Eng J Med. 2001;  344 501-509
  • 3 Osman F, Franklyn JA, Holder RL, Sheppard MC, Gammage MD. Cardiovascular manifestations of hyperthyroidism before and after antithyroid therapy: a matched case-control study.  J Am Coll Cardiol. 2007;  49 71-81
  • 4 Faber J, Wiinberg N, Schifter S, Mehlsen J. Haemodynamic changes following treatment of subclinical and overt hyperthyroidism.  Eur J Endocrinol. 2001;  145 391-396
  • 5 Klein I, Levey GS. The cardiovascular system in thyrotoxicosis. In: Werner and Ingbar's The Thyroid. Braverman LE, Utiger RD, ed. Philadelphia: Lippincott-Raven Publisher 1996: 607-615
  • 6 Faber J, Petersen L, Wiinberg N, Schifter S, Mehlsen J. Haemodynamic changes after levothyroxine treatment in subclinical hypothyroidism.  Thyroid. 2002;  12 319-324
  • 7 Klein I, Ojamaa K. The cardiovascular system in hypothyroidism. In: Werner and Ingbar's The Thyroid. Braverman LE, Utiger RD, ed. Philadelphia: Lippincott-Raven Publisher 1996: 799-804
  • 8 Baughman KL. B-type natriuretic peptide – a window to the heart.  N Engl J Med. 2002;  347 158-159
  • 9 Clerico A, Iervasi G, Del Chicca MG, Emdin M, Maffei S, Nannipieri M, Sabatino L, Forini F, Manfredi C, Donato L. Circulating levels of cardiac natriuretic peptides (ANP and BNP) measured by highly sensitive and specific immunoradiometric assays in normal subjects and in patients with different degrees of heart failure.  J Endocrinol Invest. 1998;  21 170-179
  • 10 Nakagawa O, Ogawa Y, Itoh H, Suga S, Komatsu Y, Kishimoto I, Nishino K, Yoshimasa T, Nakao K. Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload.  J Clin Invest. 1995;  96 1280-1287
  • 11 Pemberton CJ, Johnson ML, Yandle TG, Espiner EA. Deconvolution analysis of cardiac natriuretic peptides during acute volume overload.  Hypertension. 2000;  36 355-359
  • 12 Hammerer-Lercher A, Neubauer E, Muller S, Pachinger O, Puschendorf B, Mair J. Head-to-head comparison of N-terminal pro-brain natriuretic peptide, brain natriuretic peptide and N-terminal pro-atrial natriuretic peptide in diagnosing left ventricular dysfunction.  Clin Chim Acta. 2001;  310 193-197
  • 13 Hunt PJ, Richards AM, Nicholls MG, Yandle TG, Doughty RN, Espiner EA. Immunoreactive amino-terminal pro-brain natriuretic peptide (NT-PROBNP): a new marker of cardiac impairment.  Clin Endocrinol. 1997;  47 287-296
  • 14 Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J, Espiner EA, Frampton C, Yandle TG. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from carvedilol in chronic ischemic left ventricular dysfunction. Australia-New Zealand Heart Failure Group.  J Am Coll Cardiol. 2001;  37 1781-1787
  • 15 Schultz M, Faber J, Kistorp C, Jarlov A, Pedersen F, Wiinberg N, Hildebrandt P. N-terminal-pro-b-type natriuretic peptide (NT-pro-BNP) in different thyroid function states.  Clin Endocrinol. 2004;  60 54-59
  • 16 Schultz M, Kistorp C, Langdahl B, Raymond I, Hildebrandt P, Faber J. N-terminal-pro-b-type natriuretic peptide in acute hyperthyroidism.  Thyroid. 2007;  17 237-241
  • 17 Kohno M, Horio T, Yasunari K, Yokokawa K, Ikeda M, Kurihara N, Nishizawa Y, Morii H, Takeda T. Stimulation of brain natriuretic peptide release from the heart by thyroid hormone.  Metabolism. 1993;  42 1059-1064
  • 18 Wei T, Zeng C, Tian Y, Chen Q, Wang L. B-type natriuretic peptide in patients with clinical hyperthyroidism.  J Endocrinol Invest. 2005;  28 8-11
  • 19 Arikan S, Tuzcu A, Gokalp D, Bahceci M, Danis R. Hyperthyroidism may affect serum N-terminal pro-B-type natriuretic peptide levels independently of cardiac dysfunction.  Clin Endocrinol. 2007;  67 202-207
  • 20 Christ-Crain M, Morgenthaler NG, Meier C, Müller C, Nussbaumer C, Bergmann A, Staub JJ, Müller B. Pro-A-type and N-terminal pro-B-type natriuretic peptide in different thyroid function states.  Swiss Med Wkly. 2005;  135 549-554
  • 21 Ozmen B, Ozmen D, Parildar Z, Mutaf I, Bayindir O. Serum N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) levels in hyperthyroidism and hypothyroidism.  Endocr Res. 2007;  32 1-8
  • 22 Ertugrul DT, Gursoy A, Sahin M, Unal AD, Pamuk B, Berberoglu Z, Ayturk S, Tutuncu NB, Demirag NG. Evaluation of brain natriuretic peptide level in hyperthyroidism and hypothyroidism.  J Natl Med Assoc. 2008;  100 401-405
  • 23 Manuchehri AM, Jayagopal V, Kilpatrick ES, Atkin SL. The effect of thyroid dysfunction on N-terminal pro-B-type natriuretic peptide concentrations.  Ann Clin Biochem. 2006;  43 184-188
  • 24 Liang F, Webb P, Marimuthu A, Zhang S, Gardner DG. Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes.  J Biol Chem. 2003;  278 15073-15083
  • 25 Gardin JM, Siscovick D, Anton-Culver H, Lynch JC, Smith VE, Klopfenstein HS, Bommer WJ, Fried L, O’Leary D, Manolio TA. Sex, age, and disease affect echocardiographic left ventricular mass and systolic function in the free-living elderly. The cardiovascular Health Study.  Circulation. 1995;  91 1735-1748
  • 26 Quinones MA, Waggoner AD, Reduto LA, Nielson JG, Young JB, Winters  Jr  WL, Ribeiro LG, Miller RR. A new, simplified and accurate method for determining ejection fraction with two-dimensional echocardiography.  Circulation. 1981;  64 744-753
  • 27 Levey AS, Bosch JP, Lewis JB, Green T, Rodgers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation.  Ann Intern Med. 1999;  130 461-470
  • 28 Schou M, Gustafsson F, Nielsen PH, Madsen LH, Kjaer A, Hildebrandt PR. Unexplained week-to-week variation in BNP and NT-proBNP is low in chronic heart failure patients during steady state.  Eur J Heart Fail. 2007;  9 68-74
  • 29 Gardner DG, Gertz BJ, Hane S. Thyroid hormone increases atrial natriuretic peptide messenger ribonucleic acid accumulation in vivo and in vitro.  Mol Endocrinol. 1987;  1 260-265
  • 30 Argentin S, Drouin J, Nemer M. Thyroid hormone stimulates rat proatriodilation mRNA levels in primary cardiocytes cultures.  Biochem Biophys Res Commun. 1987;  146 1336-1341
  • 31 Ladenson PW, Bloch KD, Seidman JG. Modulation of atrial natriuretic factor by thyroid hormone: Messenger ribonucleic acid and peptide levels in hyperthyroid, euthyroid, and hypothyroid rat atrial and ventricles.  Endocrinology. 1988;  123 652-657
  • 32 Mori Y, Nishikawa M, Matsubara H, Takagi T, Toyoda N, Oikawa S, Inada M. Stimulation of rat atrial natriuretic peptide (rANP) synthesis by triiodothyronine and thyroxine (t4): t4 as a prohormone in synthesizing rANP.  Endocrinology. 1990;  126 466-471
  • 33 Bentzen H, Pedersen RS, Nyvad O, Pedersen EB. Influence of training habits on exercise-induced changes in plasma atrial and brain natriuretic peptide and urinary excretion of aquaporin-2 in healthy man.  Scand J Clin Lab Invest. 2002;  62 541-551
  • 34 Richards AM, Tonolo G, Cleland JG, MacIntyre GD, Leckie BJ, Dargie HJ, Ball SG, Robertson JL. Plasma atrial natriuretic peptide concentrations during exercise in sodium replete and deplete normal man.  Clin Sci. 1987;  72 159-164
  • 35 Freund BJ, Wade CE, Claybaugh JR. Effects of exercise on atrial natriuretic factor. Release mechanisms and implications for fluid homeostasis.  Sports Med. 1988;  6 364-377
  • 36 Kanstrup IL, Hojlund-Carlsen PF, Damkjaer Nielsen M, Marving J, Gadsboll N. Atrial natriuretic factor: comparability of venous and arterial plasma measurements in man at rest and during exercise.  Clin Sci. 1989;  77 319-322
  • 37 Schmidt W, Bub A, Meyer M, Weiss T, Schneider G, Maassen N, Forssmann WG. Is urodilatin the missing link in exercise-dependent renal sodium retention?.  J Appl Physiol. 1998;  84 123-128
  • 38 Steele PA, MacDonnell LF, Judd SJ. Activity of gonadotropin-releasing hormone neurons during the preovulatory luteinizing hormone surge.  Fertil Steril. 1986;  45 179-184
  • 39 Barletta G, Stefani L, Del Bene R, Fronzaroli C, Vecchiarino S, Lazzeri C, Fantini F, La Villa G. Effects of exercise on natriuretic peptides and cardiac function in man.  Int J Cardiol. 1998;  65 217-225
  • 40 Krüger S, Graf J, Merx MW, Stickel T, Kunz D, Hanrath P, Janssens U. Brain natriuretic peptide kinetics during dynamic exercise in patients with chronic heart failure.  Int J Cardiol. 2004;  95 49-54
  • 41 Huang WS, Lee MS, Perng HW, Yang SP, Kuo SW, Chang HD. Circulating brain natriuretic peptide values in healthy men before and after exercise.  Metabolism. 2002;  51 1423-1426
  • 42 Marumoto K, Hamada M, Aburaya M, Hiwada K. Augmented secretion of atrial and brain natriuretic peptides during dynamic exercise in patients with old myocardial infarction.  Jpn Circ J. 1995;  59 715-724
  • 43 Tanaka M, Ishizaka Y, Ishivama Y, Kato J, Kida O, Kitamura K, Kangawa K, Matsuo H, Eto T. Exercise-induced secretion of brain natriuretic peptide in essential hypertension and normal subjects.  Hypertens Res. 1995;  18 159-166
  • 44 Casimiro-Lopes G, Alves SB, Salerno VP, Passos MCF, Lisboa PC, Moura EG. Maximum acute exercise tolerance in hyperthyroid and hypothyroid rats subjected to forced swimming.  Horm Metab Res. 2008;  40 276-280
  • 45 Cabanelas A, Lisboa PC, Moura EG, Pazos-Moura CC. Acute effects of leptin on 5′-deiodinases are modulated by thyroid state of fed rats.  Horm Metab Res. 2007;  39 818-822
  • 46 Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system.  N Engl J Med. 2001;  344 501-509
  • 47 Lumholtz IB, Siersbaek-Nielsen K, Faber J, Kirkegaard C, Friis T. Effect of propranolol on extrathyroidal metabolism of thyroxine and 3,3′,5-triiodothyronine evaluated by noncompartmental kinetics.  J Clin Endocrinol Metab. 1978;  47 587-589
  • 48 MacCullough PA. B-type natriuretic peptide and its clinical implications in heart failure.  Am Heart Hosp J. 2004;  2 26-33

Correspondence

M. SchultzMD 

Department of Cardiology and Endocrinology E

Frederiksberg University Hospital

Ndr. Fasanvej 57

2000 Frederiksberg

Denmark

Phone: +45/2192 44 10

Fax: +45/3816 43 59

Email: haurum@dadlnet.dk

    >