Zusammenfassung
Die gegenwärtige Pharmakotherapie der Alzheimer-Demenz (AD) zielt auf die Verbesserung
oder Stabilisierung von kognitiver Leistungsfähigkeit und Alltagsaktivitäten, auf
eine Verminderung des Auftretens oder eine Reduktion von nicht kognitiven, neuropsychiatrischen
Symptomen sowie auf eine Verzögerung der Progression. Zur medikamentösen Behandlung
sind diesymptomatisch wirksamen Acetylcholinesterase-Inhibitoren (ACh-I) Donepezil,
Galantamin und Rivastigmin sowie der partielle N-Methyl-D-Aspartat-(NMDA)-Antagonist
Memantine zugelassen. Neue symptomatisch wirksame Substanzen wie selektive Acetylcholinrezeptor-modulierende
Pharmaka oder Histaminrezeptorantagonisten befinden sich gegenwärtig in der Entwicklung.
Obwohl krankheitsmodifizierende, kausale Therapien derzeit noch nicht verfügbar sind,
gibt es auf den unterschiedlichen Stufen der pharmakologischen Prüfung eine Reihe
von Neuentwicklungen, darunter Substanzen, die direkt auf bekannte Pathomechanismen
der AD wirken, insbesondere den amyloidogenen Stoffwechselweg der Amyloidvorläufer-Protein-Prozessierung
(APP-Prozessierung). Leider konnte trotz präklinisch überzeugender Hinweise auf Wirksamkeit
verschiedener Ansätze bisher der klinische Durchbruch bei der „kausalen” pharmakologischen
Therapie der AD nicht erreicht werden. Mehrere im Tierversuch erfolgreiche und vielversprechende
krankheitsmodifizierende Substanzen fielen jüngst bei der klinischen Prüfung am Patienten
durch. Die vorliegende Übersichtsarbeit fasst bewertend die etablierten und insbesondere
die neuen und zukünftigen pharmakologischen Therapieoptionen zusammen.
Abstract
Until today the pharmacological therapy of Alzheimer’s disease (AD) is still limited
to symptomatic temporary improvement or stabilization of cognitive performance and
activities of daily living, and the reduction of neuropsychiatric symptoms of the
disease. Available symptomatic treatment options are the acetylcholinesterase inhibitors
(ACh-I) donepezil, galantamine, rivastigmine, and the partial N-Methyl-D-Aspartat-(NMDA)-antagonist
memantine. Further substances with symptomatic targets, especially selective acetylcholine
and histamine receptors, are currently under development. Numerous of disease-modifying
substances mainly targeting components of the amyloidogenic pathway of AD are presently
studied in different phases of preclinical and clinical trials. Against earlier expectations
which derived from promising preclinical immunization studies the breakthrough of
disease-modification in AD is not in sight yet. Aim of this review is to summarize
established pharmacological treatment options and the stage of development of upcoming
symptomatic and disease-modifying substances of AD.
Schlüsselwörter
Alzheimer Demenz - Pharmakotherapie - symptomatisch - krankheitsmodifizierend
Key words
Alzheimer’s Disease - pharmacotherapy - symptomatic - disease-modifying
Literatur
1
Wang D, Noda Y, Zhou Y. et al .
The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates
the cognitive dysfunction in beta amyloid25 – 35i. c.v.-injected mice: involvement
of dopaminergic systems.
Neuropsychopharmacology.
2007;
32
1261-1271
2 Institut für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG .Abschlussbericht
A 05 – 19A am 7.2.2007: Cholinesterasehemmer bei Alzheimer Demenz. Köln;
3
Klein J.
Phenserine.
Expert Opin Investig Drugs.
2007;
16
1087-1097
4
Utsuki T, Yu Q S, Davidson D. et al .
Identification of novel small molecule inhibitors of amyloid precursor protein synthesis
as a route to lower Alzheimer’s disease amyloid-beta peptide.
J Pharmacol Exp Ther.
2006;
318
855-862
5
Kadir A, Andreasen N, Almkvist O. et al .
Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s
disease.
Ann Neurol.
2008;
63
621-631
6
Thatte U.
Phenserine Axonyx.
Curr Opin Investig Drugs.
2005;
6
729-739
7
Levin E D.
Nicotinic receptor subtypes and cognitive function.
J Neurobiol.
2002;
53
633-640
8 CoMentis, Pressemeldung vom 7.1.2009: CoMentis Announces Proof-of-Activity-Data
from its Phase I Study of Disease-Modifying Alzheimer’s Disease Therapy;. South San
Francisco, CA;
9 Memory Pharmaceuticals, Pressemitteilung vom 17.9.2008: Memory Pharmaceuticals and
Roche Expand R 3487 /MEM 3454 Development Program;. Montvale, New Jersey;
10 Memory Pharmaceuticals, Pressemeldung vom 19.12.2008: Memory Pharmaceuticals Reports
Phase 1 Data for R 4996 /MEM 63 908;. Montvale, New Jersey;
11
Marighetto A, Valerio S, Desmedt A. et al .
Comparative effects of the alpha7 nicotinic partial agonist, S 24 795, and the cholinesterase
inhibitor, donepezil, against aging-related deficits in declarative and working memory
in mice.
Psychopharmacology.
2008;
197
499-508
12
Dunbar G, Boeijinga P H, Demazieres A. et al .
Effects of TC-1734 (AZD3480), a selective neuronal nicotinic receptor agonist, on
cognitive performance and the EEG of young healthy male volunteers.
Psychopharmacology.
2007;
191
919-929
13
Bakchine S, Loft H.
Memantine treatment in patients with mild to moderate Alzheimer’s disease: results
of a randomised, double-blind, placebo-controlled 6-month study.
J Alzheimers Dis.
2008;
13
97-107
14
Dyck C H, Tariot P N, Meyers van B. et al .
A 24-week randomized, controlled trial of memantine in patients with moderate-to-severe
Alzheimer disease.
Alzheimer Dis Assoc Disord.
2007;
21
136-143
15
Lynch G.
Glutamate-based therapeutic approaches: ampakines.
Curr Opin Pharmacol.
2006;
6
82-88
16
Lauterborn J C, Rex C S, Kramar E. et al .
Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of
fragile X syndrome.
J Neurosci.
2007;
27
10685-10694
17
Rex C S, Lauterborn J C, Lin C Y. et al .
Restoration of long-term potentiation in middle-aged hippocampus after induction of
brain-derived neurotrophic factor.
J Neurophysiol.
2006;
96
677-685
18
Haas H, Panula P.
The role of histamine and the tuberomamillary nucleus in the nervous system.
Nat Rev Neurosci.
2003;
4
121-130
19
Medhurst A D, Atkins A R, Beresford I J. et al .
GSK189254, a novel H 3 receptor antagonist that binds to histamine H 3 receptors in
Alzheimer’s disease brain and improves cognitive performance in preclinical models.
J Pharmacol Exp Ther.
2007;
321
1032-1045
20
Brown R E, Stevens D R, Haas H L.
The physiology of brain histamine.
Prog Neurobiol.
2001;
63
637-672
21
Bachurin S, Bukatina E, Lermontova N. et al .
Antihistamine agent Dimebon as a novel neuroprotector and a cognition enhancer.
Ann N Y Acad Sci.
2001;
939
425-435
22
Bachurin S O, Shevtsova E P, Kireeva E G. et al .
Mitochondria as a target for neurotoxins and neuroprotective agents.
Ann N Y Acad Sci.
2003;
993
334-344; discussion 345 – 339
23
Doody R S, Gavrilova S I, Sano M. et al .
Effect of dimebon on cognition, activities of daily living, behaviour, and global
function in patients with mild-to-moderate Alzheimer’s disease: a randomised, double-blind,
placebo-controlled study.
Lancet.
2008;
372
207-215
24 Rowe W B, Callahan P M, Hsu C C. Characterization of Serotonin 5 HT6 Receptor Antagonists
as Putative Drugs for Age-Related Cognitive Impairment and Alzheimer’s Disease. International
Conference on Alzheimer’s Disease (ICAD) 2008
25 Memory Pharmaceuticals, Pipeline of Products am 27.1.2009: ”MEM 1003”,. Québec,
Canada;
26 Memory Pharmaceuticals, Pipeline of Products am 27.1.2009: ”MEM 1414”,. Québec,
Canada;
27
Szekely C A, Thorne J E, Zandi P P. et al .
Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a
systematic review.
Neuroepidemiology.
2004;
23
159-169
28
Akiyama H, Barger S, Barnum S. et al .
Inflammation and Alzheimer’s disease.
Neurobiol Aging.
2000;
21
383-421
29
Gasparini L, Ongini E, Wilcock D. et al .
Activity of flurbiprofen and chemically related anti-inflammatory drugs in models
of Alzheimer’s disease.
Brain Res Brain Res Rev.
2005;
48
400-408
30
Czirr E, Weggen S.
Gamma-secretase modulation with Abeta42-lowering nonsteroidal anti-inflammatory drugs
and derived compounds.
Neurodegener Dis.
2006;
3
298-304
31
Tabet N, Feldmand H.
Ibuprofen for Alzheimer’s disease.
Cochrane Database Syst Rev.
2003;
2
CD004031
32
Szekely C A, Green R C, Breitner J C. et al .
No advantage of A beta 42-lowering NSAIDs for prevention of Alzheimer dementia in
six pooled cohort studies.
Neurology.
2008;
70
2291-2298
33
Kukar T L, Ladd T B, Bann M A. et al .
Substrate-targeting gamma-secretase modulators.
Nature.
2008;
453
925-929
34 Myriad Genetics, Pressemeldung vom 30.8.2008: Results of U.S. Phase 3 Trial of
Flurizan™ in Alzheimer’s Disease;. Salt Lake City, UT;
35
Reid P C, Urano Y, Kodama T. et al .
Alzheimer’s disease: cholesterol, membrane rafts, isoprenoids and statins.
J Cell Mol Med.
2007;
11
383-392
36
Kurinami H, Sato N, Shinohara M. et al .
Prevention of amyloid beta-induced memory impairment by fluvastatin, associated with
the decrease in amyloid beta accumulation and oxidative stress in amyloid beta injection
mouse model.
Int J Mol Med.
2008;
21
531-537
37
Fahrenholz F, Postina R.
Alpha-secretase activation – an approach to Alzheimer’s disease therapy.
Neurodegener Dis.
2006;
3
255-261
38
Schmidt R, Neff F, Lampl C. et al .
Therapy of Alzheimer’s disease: current status and future development.
Neuropsychiatr.
2008;
22
153-171
39
Dolga A M, Nijholt I M, Ostroveanu A. et al .
Lovastatin induces neuroprotection through tumor necrosis factor receptor 2 signaling
pathways.
J Alzheimers Dis.
2008;
13
111-122
40
Scott H D, Laake K.
Statins for the prevention of Alzheimer’s disease.
Cochrane Database Syst Rev.
2001;
4
CD003160
41
Scott H D, Laake K.
Statins for the reduction of risk of Alzheimer’s disease.
Cochrane Database Syst Rev.
2001;
3
CD003160
42
Jones R W, Kivipelto M, Feldman H. et al .
The Atorvastatin/Donepezil in Alzheimer’s Disease Study (LEADe): design and baseline
characteristics.
Alzheimers Dement.
2008;
4
145-153
43
Deuss M, Reiss K, Hartmann D.
Part-time alpha-secretases: the functional biology of ADAM 9, 10 and 17.
Curr Alzheimer Res.
2008;
5
187-201
44
Holback S, Adlerz L, Gatsinzi T. et al .
PI3-K- and PKC-dependent up-regulation of APP processing enzymes by retinoic acid.
Biochem Biophys Res Commun.
2008;
365
298-303
45
Schobel S, Neumann S, Hertweck M. et al .
A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage
of the amyloid precursor protein.
J Biol Chem.
2008;
283
14 257-14 268
46
Yang H Q, Pan J, Ba M W. et al .
New protein kinase C activator regulates amyloid precursor protein processing in vitro
by increasing alpha-secretase activity.
Eur J Neurosci.
2007;
26
381-391
47
Siemers E R, Quinn J F, Kaye J. et al .
Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer
disease.
Neurology.
2006;
66
602-604
48
Santa-Maria I, Hernandez F, Del Rio J. et al .
Tramiprosate, a drug of potential interest for the treatment of Alzheimer’s disease,
promotes an abnormal aggregation of tau.
Mol Neurodegener.
2007;
2
17
49
Aisen P S, Saumier D, Briand R. et al .
A Phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease.
Neurology.
2006;
67
1757-1763
50
Aisen P S, Gauthier S, Vellas B. et al .
Alzhemed: a potential treatment for Alzheimer’s disease.
Curr Alzheimer Res.
2007;
4
473-478
51 Neurochem, Pipeline of Products am 27.1.2009: ”In November 2007, Neurochem announced
the early termination of the European Phase III clinical trial...” Québec, Canada;
52
Lannfelt L, Blennow K, Zetterberg H. et al .
Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying
therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled
trial.
Lancet Neurol.
2008;
7
779-786
53
Bush A I, Martins R N, Rumble B. et al .
The amyloid precursor protein of Alzheimer’s disease is released by human platelets.
J Biol Chem.
1990;
265
15977-15983
54
Pajonk F G, Kessler H, Supprian T. et al .
Cognitive decline correlates with low plasma concentrations of copper in patients
with mild to moderate Alzheimer’s disease.
J Alzheimers Dis.
2005;
8
23-27
55
Kessler H, Bayer T A, Bach D. et al .
Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease:
a pilot phase 2 clinical trial.
J Neural Transm.
2008;
115
1181-1187
56
Brody D L, Holtzman D M.
Active and passive immunotherapy for neurodegenerative disorders.
Annu Rev Neurosci.
2008;
31
175-193
57
Lemere C A, Maier M, Peng Y. et al .
Novel Abeta immunogens: is shorter better?.
Curr Alzheimer Res.
2007;
4
427-436
58
Schenk D, Barbour R, Dunn W. et al .
Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the
PDAPP mouse.
Nature.
1999;
400
173-177
59
Hock C, Konietzko U, Papassotiropoulos A. et al .
Generation of antibodies specific for beta-amyloid by vaccination of patients with
Alzheimer disease.
Nat Med.
2002;
8
1270-1275
60
Senior K.
Dosing in phase II trial of Alzheimer’s vaccine suspended.
Lancet Neurol.
2002;
1
3
61
Masliah E, Hansen L, Adame A. et al .
Abeta vaccination effects on plaque pathology in the absence of encephalitis in Alzheimer
disease.
Neurology.
2005;
64
129-131
62
Fox N C, Black R S, Gilman S. et al .
Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer
disease.
Neurology.
2005;
64
1563-1572
63
Gilman S, Koller M, Black R S. et al .
Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted
trial.
Neurology.
2005;
64
1553-1562
64
Pride M, Seubert P, Grundman M. et al .
Progress in the active immunotherapeutic approach to Alzheimer’s disease: clinical
investigations into AN 1792-associated meningoencephalitis.
Neurodegener Dis.
2008;
5
194-196
65
Bard F, Cannon C, Barbour R. et al .
Peripherally administered antibodies against amyloid beta-peptide enter the central
nervous system and reduce pathology in a mouse model of Alzheimer disease.
Nat Med.
2000;
6
916-919
66
Dodart J C, Bales K R, Gannon K S. et al .
Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s
disease model.
Nat Neurosci.
2002;
5
452-457
67 Elan, Pressemitteilung vom 17.6.2008: Elan and Wyeth Announce Encouraging Top-line
Results from Phase 2 Clinical Trial of Bapineuzumab for Alzheimer’s Disease;. Dublin,
Ireland & Madison, N.J;
68
Hooper C, Killick R, Lovestone S.
The GSK3 hypothesis of Alzheimer’s disease.
J Neurochem.
2008;
104
1433-1439
69
Hattori M, Sugino E, Minoura K. et al .
Different inhibitory response of cyanidin and methylene blue for filament formation
of tau microtubule-binding domain.
Biochem Biophys Res Commun.
2008;
374
158-163
70
Landreth G, Jiang Q, Mandrekar S. et al .
PPARgamma agonists as therapeutics for the treatment of Alzheimer’s disease.
Neurotherapeutics.
2008;
5
481-489
71
Engler H, Forsberg A, Almkvist O. et al .
Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease.
Brain.
2006;
129
2856-2866
72
Holmes C, Boche D, Wilkinson D. et al .
Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised,
placebo-controlled phase I trial.
Lancet.
2008;
372
216-223
73 Affiris, Pressemitteilung vom 16.7.2008: AFFiRiS: Milestone Reached in Clinical
Trial of Alzheimer’s Vaccine;. Vienna, Astria;
PD Dr. med. Andreas Fellgiebel
Klinik für Psychiatrie und Psychotherapie, Universitätsmedizin der Johannes Gutenberg-Universität
Mainz
Untere Zahlbacher Str. 8
55131 Mainz
Email: fellgiebel@psychiatrie.klinik.uni-mainz.de