Semin Reprod Med 2008; 26(6): 515-521
DOI: 10.1055/s-0028-1096131
© Thieme Medical Publishers

MicroRNA: A New Tool for Biomedical Risk Assessment and Target Identification in Human Uterine Leiomyomas

Jian-Jun Wei1 , Patricia Soteropoulos2
  • 1Associate Professor, Department of Pathology, Northwestern University, Chicago, Illinois
  • 2Public Health Research Institute and Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, Newark, New Jersey
Further Information

Publication History

Publication Date:
24 October 2008 (online)

ABSTRACT

MicroRNA (miRNA) expression is tissue specific or cell-type specific. miRNA signatures are useful tools for tumor classification and target gene identification. We and others found that uterine leiomyomas (ULMs) expressed a distinct miRNA signature. In addition, miRNA expression appears to be strongly associated with race and other biomedical factors, such as tumor sizes. Among the most highly dysregulated miRNAs, let-7 miRNAs seem to play a critical role in tumorigenesis of ULMs through negative regulation of some key target oncogenes, including high mobility group 2.

REFERENCES

  • 1 Baird D D, Dunson D B, Hill M C, Cousins D, Schectman J M. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence.  Am J Obstet Gynecol. 2003;  188 100-107
  • 2 Luoto R, Kaprio J, Rutanen E M, Taipale P, Perola M, Koskenvuo M. Heritability and risk factors of uterine fibroids—the Finnish Twin Cohort study.  Maturitas. 2000;  37 15-26
  • 3 Sato F, Mori M, Nishi M, Kudo R, Miyake H. Familial aggregation of uterine myomas in Japanese women.  J Epidemiol. 2002;  12 249-253
  • 4 Kjerulff K H, Langenberg P, Seidman J D, Stolley P D, Guzinski G M. Uterine leiomyomas. Racial differences in severity, symptoms and age at diagnosis.  J Reprod Med. 1996;  41 483-490
  • 5 Marshall L M, Spiegelman D, Barbieri R L et al.. Variation in the incidence of uterine leiomyoma among premenopausal women by age and race.  Obstet Gynecol. 1997;  90 967-973
  • 6 Wise L A, Palmer J R, Harlow B L et al.. Reproductive factors, hormonal contraception, and risk of uterine leiomyomata in African-American women: a prospective study.  Am J Epidemiol. 2004;  159 113-123
  • 7 Ligon A H, Morton C C. Leiomyomata: heritability and cytogenetic studies.  Hum Reprod Update. 2001;  7 8-14
  • 8 Moore S D, Herrick S R, Ince T A et al.. Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF.  Cancer Res. 2004;  64 5570-5577
  • 9 Lehtonen R, Kiuru M, Vanharanta S et al.. Biallelic inactivation of fumarate hydratase (FH) occurs in nonsyndromic uterine leiomyomas but is rare in other tumors.  Am J Pathol. 2004;  164 17-22
  • 10 Garcia-Torres R, Cruz D, Orozco L, Heidet L, Gubler M C. Alport syndrome and diffuse leiomyomatosis. Clinical aspects, pathology, molecular biology and extracellular matrix studies. A synthesis.  Nephrologie. 2000;  21 9-12
  • 11 Skubitz K M, Skubitz A P. Differential gene expression in uterine leiomyoma.  J Lab Clin Med. 2003;  141 297-308
  • 12 Ahn W S, Kim K W, Bae S M et al.. Targeted cellular process profiling approach for uterine leiomyoma using cDNA microarray, proteomics and gene ontology analysis.  Int J Exp Pathol. 2003;  84 267-279
  • 13 Quade B J, Wang T Y, Sornberger K, Cin P D, Mutter G L, Morton C C. Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling.  Genes Chromosomes Cancer. 2004;  40 97-108
  • 14 Wang H, Mahadevappa M, Yamamoto K et al.. Distinctive proliferative phase differences in gene expression in human myometrium and leiomyomata.  Fertil Steril. 2003;  80 266-276
  • 15 Catherino W H, Prupas C, Tsibris J C et al.. Strategy for elucidating differentially expressed genes in leiomyomata identified by microarray technology.  Fertil Steril. 2003;  80 282-290
  • 16 Chegini N, Verala J, Luo X, Xu J, Williams R S. Gene expression profile of leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy.  J Soc Gynecol Investig. 2003;  10 161-171
  • 17 Tsibris J C, Segars J, Coppola D et al.. Insights from gene arrays on the development and growth regulation of uterine leiomyomata.  Fertil Steril. 2002;  78 114-121
  • 18 Weston G, Trajstman A C, Gargett C E, Manuelpillai U, Vollenhoven B J, Rogers P A. Fibroids display an anti-angiogenic gene expression profile when compared with adjacent myometrium.  Mol Hum Reprod. 2003;  9 541-549
  • 19 Hoffman P J, Milliken D B, Gregg L C, Davis R R, Gregg J P. Molecular characterization of uterine fibroids and its implication for underlying mechanisms of pathogenesis.  Fertil Steril. 2004;  82 639-649
  • 20 Pan Q, Luo X, Chegini N. Genomic and proteomic profiling I: leiomyomas in African Americans and Caucasians.  Reprod Biol Endocrinol. 2007;  5 34
  • 21 Arslan A A, Gold L I, Mittal K et al.. Gene expression studies provide clues to the pathogenesis of uterine leiomyoma: new evidence and a systematic review.  Hum Reprod. 2005;  20 852-863
  • 22 Farquhar C M, Steiner C A. Hysterectomy rates in the United States 1990–1997.  Obstet Gynecol. 2002;  99 229-234
  • 23 Zhao S Z, Wong J M, Arguelles L M. Hospitalization costs associated with leiomyoma.  Clin Ther. 1999;  21 563-575
  • 24 Mauskopf J, Flynn M, Thieda P, Spalding J, Duchane J. The economic impact of uterine fibroids in the United States: a summary of published estimates.  J Womens Health (Larchmt). 2005;  14 692-703
  • 25 Amarzguioui M, Rossi J J, Kim D. Approaches for chemically synthesized siRNA and vector-mediated RNAi.  FEBS Lett. 2005;  579 5974-5981
  • 26 Alvarez-Garcia I, Miska E A. MicroRNA functions in animal development and human disease.  Development. 2005;  132 4653-4662
  • 27 Lu J, Getz G, Miska E A et al.. MicroRNA expression profiles classify human cancers.  Nature. 2005;  435 834-838
  • 28 Croce C M, Calin G A. miRNAs, cancer, and stem cell division.  Cell. 2005;  122 6-7
  • 29 Shingara J, Keiger K, Shelton J et al.. An optimized isolation and labeling platform for accurate microRNA expression profiling.  RNA. 2005;  11 1461-1470
  • 30 Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J. miRBase: microRNA sequences, targets and gene nomenclature.  Nucleic Acids Res. 2006;  34 D140-D144
  • 31 Wang T, Zhang X, Obijuru L et al.. A micro-RNA signature associated with race, tumor size, and target gene activity in human uterine leiomyomas.  Genes Chromosomes Cancer. 2007;  46 336-347
  • 32 Pan Q, Luo X, Chegini N. Differential expression of microRNAs in myometrium and leiomyomas and regulation by ovarian steroids.  J Cell Mol Med. 2008;  12 227-240
  • 33 Marsh E E, Lin Z, Yin P, Milad M, Chakravarti D, Bulun S E. Differential expression of microRNA species in human uterine leiomyoma versus normal myometrium.  Fertil Steril. 2008;  89 1771-1776
  • 34 Flake G P, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review.  Environ Health Perspect. 2003;  111 1037-1054
  • 35 Vanharanta S, Wortham N C, Laiho P et al.. 7q deletion mapping and expression profiling in uterine fibroids.  Oncogene. 2005;  24 6545-6554
  • 36 Levy B, Mukherjee T, Hirschhorn K. Molecular cytogenetic analysis of uterine leiomyoma and leiomyosarcoma by comparative genomic hybridization.  Cancer Genet Cytogenet. 2000;  121 1-8
  • 37 Iorio M V, Ferracin M, Liu C G et al.. MicroRNA gene expression deregulation in human breast cancer.  Cancer Res. 2005;  65 7065-7070
  • 38 Calin G A, Liu C G, Sevignani C et al.. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias.  Proc Natl Acad Sci U S A. 2004;  101 11755-11760
  • 39 Volinia S, Calin G A, Liu C G et al.. A microRNA expression signature of human solid tumors defines cancer gene targets.  Proc Natl Acad Sci U S A. 2006;  103 2257-2261
  • 40 Wilcox L S, Koonin L M, Pokras R, Strauss L T, Xia Z, Peterson H B. Hysterectomy in the United States, 1988–1990.  Obstet Gynecol. 1994;  83 549-555
  • 41 Wise L A, Palmer J R, Spiegelman D et al.. Influence of body size and body fat distribution on risk of uterine leiomyomata in U.S. black women.  Epidemiology. 2005;  16 346-354
  • 42 Al-Hendy A, Salama S A. Catechol-O-methyltransferase polymorphism is associated with increased uterine leiomyoma risk in different ethnic groups.  J Soc Gynecol Investig. 2006;  13 136-144
  • 43 Al-Hendy A, Salama S A. Ethnic distribution of estrogen receptor-alpha polymorphism is associated with a higher prevalence of uterine leiomyomas in black Americans.  Fertil Steril. 2006;  86 686-693
  • 44 Wei J J, Chiriboga L, Arslan A A, Melamed J, Yee H, Mittal K. Ethnic differences in expression of the dysregulated proteins in uterine leiomyomata.  Hum Reprod. 2006;  21 57-67
  • 45 Spielman R S, Bastone L A, Burdick J T, Morley M, Ewens W J, Cheung V G. Common genetic variants account for differences in gene expression among ethnic groups.  Nat Genet. 2007;  39 226-231
  • 46 DeWaay D J, Syrop C H, Nygaard I E, Davis W A, Van Voorhis B J. Natural history of uterine polyps and leiomyomata.  Obstet Gynecol. 2002;  100 3-7
  • 47 Davis B. Uterine Leiomyoma Longitudinal Interventions Studies. The Fibroid Growth Study. Bethesda, MD; NIH 2005
  • 48 Gross K L, Neskey D M, Manchanda N et al.. HMGA2 expression in uterine leiomyomata and myometrium: quantitative analysis and tissue culture studies.  Genes Chromosomes Cancer. 2003;  38 68-79
  • 49 Hennig Y, Rogalla P, Wanschura S et al.. HMGIC expressed in a uterine leiomyoma with a deletion of the long arm of chromosome 7 along with a 12q14–15 rearrangement but not in tumors showing del(7) as the sole cytogenetic abnormality.  Cancer Genet Cytogenet. 1997;  96 129-133
  • 50 Klotzbucher M, Wasserfall A, Fuhrmann U. Misexpression of wild-type and truncated isoforms of the high-mobility group I proteins HMGI-C and HMGI(Y) in uterine leiomyomas.  Am J Pathol. 1999;  155 1535-1542
  • 51 Wei J J, Zhang X M, Chiriboga L, Yee H, Perle M A, Mittal K. Spatial differences in biologic activity of large uterine leiomyomata.  Fertil Steril. 2006;  85 179-187
  • 52 Wei J J, Chiriboga L, Mittal K. Expression profile of the tumorigenic factors associated with tumor size and sex steroid hormone status in uterine leiomyomata.  Fertil Steril. 2005;  84 474-484
  • 53 Reinhart B J, Slack F J, Basson M et al.. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.  Nature. 2000;  403 901-906
  • 54 Pasquinelli A E, Reinhart B J, Slack F et al.. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA.  Nature. 2000;  408 86-89
  • 55 Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs.  Science. 2001;  294 853-858
  • 56 Johnson C D, Esquela-Kerscher A, Stefani G et al.. The let-7 microRNA represses cell proliferation pathways in human cells.  Cancer Res. 2007;  67 7713-7722
  • 57 Calin G A, Sevignani C, Dumitru C D et al.. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers.  Proc Natl Acad Sci U S A. 2004;  101 2999-3004
  • 58 Takamizawa J, Konishi H, Yanagisawa K et al.. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.  Cancer Res. 2004;  64 3753-3756
  • 59 Johnson S M, Grosshans H, Shingara J et al.. RAS is regulated by the let-7 microRNA family.  Cell. 2005;  120 635-647
  • 60 Krek A, Grun D, Poy M N et al.. Combinatorial microRNA target predictions.  Nat Genet. 2005;  37 495-500
  • 61 Peng , Laser J, Ye G, Mittal K, Lee P, Wei J J. Antiproliferative effects by let-7 repression of high-mobility group A2 in uterine leiomyoma.  Mol Cancer Res. 2008;  6 663-673
  • 62 Mayr C, Hemann M T, Bartel D P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation.  Science. 2007;  315 1576-1579
  • 63 Lee Y S, Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene.  Genes Dev. 2007;  21 1025-1030
  • 64 Shell S, Park S M, Radjabi A R et al.. Let-7 expression defines two differentiation stages of cancer.  Proc Natl Acad Sci U S A. 2007;  104 11400-11405
  • 65 Tarasov V, Jung P, Verdoodt B et al.. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest.  Cell Cycle. 2007;  6 1586-1593
  • 66 Hebert C, Norris K, Scheper M A, Nikitakis N, Sauk J J. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma.  Mol Cancer. 2007;  6 5
  • 67 Lim L P, Lau N C, Garrett-Engele P et al.. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.  Nature. 2005;  433 769-773
  • 68 Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B. Prediction of mammalian microRNA targets.  Cell. 2003;  115 787-798
  • 69 Liu T, Papagiannakopoulos T, Puskar K et al.. Detection of a microRNA signal in an in vivo expression set of mRNAs.  PLoS One. 2007;  2 e804
  • 70 Yu Z, Jian Z, Shen S H, Purisima E, Wang E. Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos.  Nucleic Acids Res. 2007;  35 152-164
  • 71 Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression.  Proc Natl Acad Sci U S A. 2006;  103 2746-2751
  • 72 John B, Enright A J, Aravin A, Tuschl T, Sander C, Marks D S. Human microRNA targets.  PLoS Biol. 2004;  2 e363
  • 73 Bagga S, Bracht J, Hunter S et al.. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation.  Cell. 2005;  122 553-563
  • 74 Lee Y S, Kim H K, Chung S, Kim K S, Dutta A. Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation.  J Biol Chem. 2005;  280 16635-16641
  • 75 Pillai R S, Bhattacharyya S N, Artus C G et al.. Inhibition of translational initiation by let-7 microRNA in human cells.  Science. 2005;  309 1573-1576
  • 76 Hui P, Li N, Johnson C et al.. HMGA proteins in malignant peripheral nerve sheath tumor and synovial sarcoma: preferential expression of HMGA2 in malignant peripheral nerve sheath tumor.  Mod Pathol. 2005;  18 1519-1526
  • 77 Sampson V B, Rong N H, Han J et al.. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells.  Cancer Res. 2007;  67 9762-9770
  • 78 Hennig Y, Deichert U, Bonk U, Thode B, Bartnitzke S, Bullerdiek J. Chromosomal translocations affecting 12q14–15 but not deletions of the long arm of chromosome 7 associated with a growth advantage of uterine smooth muscle cells.  Mol Hum Reprod. 1999;  5 1150-1154
  • 79 Rein M S, Powell W L, Walters F C et al.. Cytogenetic abnormalities in uterine myomas are associated with myoma size.  Mol Hum Reprod. 1998;  4 83-86
  • 80 Lewis B P, Burge C B, Bartel D P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.  Cell. 2005;  120 15-20

Jian-Jun WeiM.D. 

Department of Pathology, Northwestern University, SOM

Feinberg 7-334, 251 East Huron Street, Chicago, IL 60611

Email: jianjun-wei@northwestern.edu

    >